#ifndef __MFadc__ #define __MFadc__ // // class MFadc // // implemented by Harald Kornmayer // // This is a class to simulate the FADC. // It assumes a special response of the PMT for one single Photo-electron. // // // #include #include #include "TObject.h" #include "TRandom.h" #include "Mdefine.h" #include "MTriggerDefine.h" #include "MFadcDefine.h" class MMcEvt; //========== // MFadc // // The simulation of the Flash ADC system for the MAGIC teleskop is done with // this class. // So all methods concerning the FADC System should be done inside this // class. // // The Idea is to (in)put the data of the photo electrons into the class and // generate the response (output) of the FADC to that input. Response means // in this sense the ADC values of the different time slices for all pixels // // The pixelisation is done by the camera program of Jose Carlos. // // This class is closly connected to the MTrigger classs. So some of the // values defined in MTriggerDefine.h are also used by this class. // // But a lot of other stuff is defined in MFadcDefine.h. // // class MFadc { private: Int_t numpix; Int_t fInnerPixelsNum; // number of inner (small) pixels. // // then for all pixels the shape of all the analog signals // Bool_t used[CAMERA_PIXELS] ; // a boolean to indicated if the pixels is used in this event Float_t pedestal[CAMERA_PIXELS] ; // Pedestal of FADCs Int_t fSlices_mFadc; // Number of simulated FADC slices. Larger than the actual number of slices // that will be written, since we have to account for possible delays in the // trigger Int_t fResponseSlicesFadc; // // Float_t sig[CAMERA_PIXELS][] ; // the analog signal for pixels, in bins of width // equal to the FADC slice: (default 50/15 ns), but with a // total of fSlices_mFadc bins (default 48). // Float_t *sig[CAMERA_PIXELS]; Float_t *noise; Float_t *noise_outer; Float_t *digital_noise; Float_t *output[CAMERA_PIXELS]; // the analog signal for pixels that is read after a trigger // occurs (high gain). Float_t *output_lowgain[CAMERA_PIXELS]; // analog signal, low gain. Float_t high2low_gain; // // first the data for the response function // Int_t shape_resp; // index shape of the phe_response function // = 0 --> Gaussian // = 1 --> Pulpo set-up Float_t fwhm_resp; // fwhm of the phe_response function (in ns) Float_t integ_resp; // area below curve of the phe_response function (in counts * ns) Float_t *sing_resp; // the shape of the phe_response function Float_t fFadcSlicesPerNanosec; // Number of FADC slices per nanosecond, that is, the // sampling frequency of the FADC. Int_t fFadcSlices; // Number of FADC slices that will be written on the output // file (same number for high and low gain) // // We may end up with a different reponse for the outer pixels // Int_t shape_resp_outer ; // index shape of the phe_response function // = 0 --> Gaussian // = 1 --> Pulpo set-up Float_t fwhm_resp_outer ; // fwhm of the phe_response function (in ns) Float_t integ_resp_outer; // area below curve of the phe_response function (in counts * ns) Float_t *sing_resp_outer; // the shape of the phe_response function Int_t fGainSwitchAmp; // Height of the high gain signal (in ADC counts) at which we decide // to fill the low gain with a scaled down version of the pulse in the // high gain. Else we put in the continuation of the high gain. Int_t fShiftFromSwitch2LowGain; // Distance in FADC slices from the slice in which the amplitude // fGainSwitchAmp is reached to were the switch to low gain will happen. // // RandomGenerator for the Electronic Noise // TRandom *GenElec ; Float_t fadc_time_offset; // Time offset to adjust the delay between trigger // and the peak position in the FADC of the signal // in the trigger pixels. public: MFadc(Int_t pix = 577, Int_t shape = 0, Float_t ampl = MFADC_RESPONSE_INTEGRAL, Float_t fwhm = MFADC_RESPONSE_FWHM, Int_t shapeout = 0, Float_t amplout = MFADC_RESPONSE_INTEGRAL, Float_t fwhmout = MFADC_RESPONSE_FWHM, Float_t trig_delay = 0., Float_t fadc_slices_per_ns = FADC_SLICES_PER_NSEC, Int_t fadc_slices_written = FADC_SLICES, Int_t gainswitchamp = 120, Int_t shiftfromswitch2lowgain = 13); void SetSeed(UInt_t seed) {GenElec->SetSeed(seed);} void Reset() ; void Fill( Int_t, Float_t, Float_t, Int_t ) ; void Fill( Int_t, Float_t, Float_t ) ; void FillOuter( Int_t, Float_t, Float_t ) ; void Set( Int_t iPix, Float_t *res); void AddSignal( Int_t iPix, Float_t *res); void SetPedestals( Int_t ped); void SetPedestals( Float_t *ped); void SetShape( Int_t inner, Int_t outer){ shape_resp=inner; shape_resp_outer=outer; } void SetFwhm( Float_t fwhm){ fwhm_resp=fwhm; } void SetInteg( Float_t x){ integ_resp=x; } void SetFwhmOuter( Float_t fwhm){ fwhm_resp_outer=fwhm; } void SetIntegOuter( Float_t x){ integ_resp_outer=x; } void Baseline(); void Pedestals(); void Offset( Float_t, Int_t ); void SetElecNoise(Float_t value1=2.0, Float_t value2=2.0, UInt_t ninpix=CAMERA_PIXELS); void ElecNoise(); void SetDigitalNoise(Float_t value=2.0); void DigitalNoise() ; void Scan() ; void Scan(Float_t time) ; void GetResponse( Float_t *resp ) ; void GetPedestals( Float_t *offset); Float_t GetPedestalNoise (Int_t pix, Int_t ishigh); Float_t AddNoiseInSlices( Int_t pix, Int_t ishigh, Int_t n_slices); void TriggeredFadc(Float_t time); void ShowSignal ( MMcEvt *McEvt , Float_t ) ; UChar_t GetFadcSignal(Int_t pixel, Int_t slice); UChar_t GetFadcLowGainSignal(Int_t pixel, Int_t slice); void SetHigh2LowGain(Float_t h2l) {high2low_gain=h2l;} Int_t GetShape() { return shape_resp; } Float_t GetIntegral() { return integ_resp ; } Float_t GetFwhm() { return fwhm_resp ; } Float_t GetIntegralOuter() { return integ_resp_outer ; } Float_t GetFwhmOuter() { return fwhm_resp_outer ; } Float_t GetFadcSlicesPerNanosec() { return fFadcSlicesPerNanosec; } Int_t GetResponseSlicesFadc() { return fResponseSlicesFadc; } Bool_t IsPixelUsed(UInt_t p){ return used[p]; } } ; #endif