1 | /////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | // MTrigger
|
---|
4 | //
|
---|
5 | //
|
---|
6 | #include "MTrigger.hxx"
|
---|
7 |
|
---|
8 | #include "TROOT.h"
|
---|
9 | #include "TFile.h"
|
---|
10 | #include "TH1.h"
|
---|
11 | #include "TObjArray.h"
|
---|
12 | #include "MGTriggerSignal.hxx"
|
---|
13 | #include "MGeomCam.h"
|
---|
14 | #include "MGeomPix.h"
|
---|
15 |
|
---|
16 | MTrigger::MTrigger(int pix) {
|
---|
17 | // ============================================================
|
---|
18 | //
|
---|
19 | // default constructor
|
---|
20 | //
|
---|
21 | // The procedure is the following:
|
---|
22 | //
|
---|
23 | // 1. Allocation of some memory needed
|
---|
24 | // 2. some parameters of the trigger are set to default.
|
---|
25 | // 3. if a File MTrigger.card exists in the current directory,
|
---|
26 | // this parameters of the trigger may be changed
|
---|
27 | // 4. Then the all signals are set to zero
|
---|
28 |
|
---|
29 | FILE *unit_mtrig ;
|
---|
30 | Int_t endflag = 1 ;
|
---|
31 | Int_t bthresholdpixel = FALSE;
|
---|
32 | char datac[256] ;
|
---|
33 | char dummy[50] ;
|
---|
34 | char input_thres[50];
|
---|
35 | Int_t i, ii ;
|
---|
36 |
|
---|
37 | Float_t threshold ;
|
---|
38 |
|
---|
39 | // Number of pixels in the trigger region
|
---|
40 | pixnum=pix;
|
---|
41 |
|
---|
42 | //
|
---|
43 | // allocate the memory for the 2dim arrays (a_sig, d_sig )
|
---|
44 | //
|
---|
45 |
|
---|
46 | used = new Bool_t[pix];
|
---|
47 | nphotshow = new Int_t[pix];
|
---|
48 | nphotnsb = new Int_t[pix];
|
---|
49 | nphotstar = new Int_t[pix];
|
---|
50 | a_sig = new Float_t * [pix];
|
---|
51 | d_sig = new Float_t * [pix];
|
---|
52 | baseline = new Float_t[pix];
|
---|
53 | dknt = new Bool_t[pix];
|
---|
54 | noise = new Float_t[TRIGGER_TIME_SLICES*1001];
|
---|
55 | chan_thres = new Float_t[pix];
|
---|
56 | for(Int_t j=0;j<6;j++)
|
---|
57 | NN[j] = new Int_t[pix];
|
---|
58 | for(Int_t j=0;j<TRIGGER_CELLS;j++)
|
---|
59 | TC[j] = new Int_t[pix];
|
---|
60 |
|
---|
61 | for( Int_t j=0; j<pix; j++ ) {
|
---|
62 |
|
---|
63 | a_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
|
---|
64 |
|
---|
65 | d_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
|
---|
66 | }
|
---|
67 |
|
---|
68 |
|
---|
69 |
|
---|
70 | //
|
---|
71 | // set the values for the standard response pulse
|
---|
72 | //
|
---|
73 |
|
---|
74 | fwhm_resp = RESPONSE_FWHM ;
|
---|
75 | ampl_resp = RESPONSE_AMPLITUDE ;
|
---|
76 |
|
---|
77 | overlaping_time = TRIGGER_OVERLAPING;
|
---|
78 |
|
---|
79 | threshold = CHANNEL_THRESHOLD ;
|
---|
80 |
|
---|
81 |
|
---|
82 | gate_leng = TRIGGER_GATE ;
|
---|
83 | trigger_multi = TRIGGER_MULTI ;
|
---|
84 | trigger_geometry = TRIGGER_GEOM ;
|
---|
85 |
|
---|
86 | //
|
---|
87 | // check if the file MTrigger.card exists
|
---|
88 | //
|
---|
89 |
|
---|
90 | if ( (unit_mtrig = fopen ("MTrigger.card", "r")) != 0 ) {
|
---|
91 | cout << "[MTrigger] use the values from MTrigger.card "<< endl ;
|
---|
92 |
|
---|
93 | while ( endflag == 1 ) {
|
---|
94 | //
|
---|
95 | //
|
---|
96 | fgets (datac, 255, unit_mtrig) ;
|
---|
97 | // printf ("--> %s <--", datac ) ;
|
---|
98 |
|
---|
99 | //
|
---|
100 | // now compare the line with controlcard words
|
---|
101 | //
|
---|
102 |
|
---|
103 | if ( strncmp (datac, "channel_threshold", 17 ) == 0 ) {
|
---|
104 | sscanf (datac, "%s %f", dummy, &threshold ) ;
|
---|
105 | }
|
---|
106 | else if ( strncmp (datac, "gate_length", 11 ) == 0 ) {
|
---|
107 | sscanf (datac, "%s %f", dummy, &gate_leng ) ;
|
---|
108 | }
|
---|
109 | else if ( strncmp (datac, "response_fwhm", 13 ) == 0 ) {
|
---|
110 | sscanf (datac, "%s %f", dummy, &fwhm_resp ) ;
|
---|
111 | }
|
---|
112 | else if ( strncmp (datac, "response_ampl", 13 ) == 0 ) {
|
---|
113 | sscanf (datac, "%s %f", dummy, &l_resp ) ;
|
---|
114 | }
|
---|
115 | else if ( strncmp (datac, "overlaping", 10 ) == 0 ) {
|
---|
116 | sscanf (datac, "%s %f", dummy, &overlaping_time ) ;
|
---|
117 | }
|
---|
118 | else if ( strncmp (datac, "multiplicity", 12 ) == 0 ) {
|
---|
119 | sscanf (datac, "%s %f", dummy, &trigger_multi ) ;
|
---|
120 | }
|
---|
121 | else if ( strncmp (datac, "topology", 8 ) == 0 ) {
|
---|
122 | sscanf (datac, "%s %i", dummy, &trigger_geometry ) ;
|
---|
123 | }
|
---|
124 | else if ( strncmp (datac, "threshold_file", 14 ) == 0 ) {
|
---|
125 | sscanf (datac, "%s %s", dummy, input_thres ) ;
|
---|
126 | bthresholdpixel=kTRUE;
|
---|
127 | }
|
---|
128 |
|
---|
129 | if ( feof(unit_mtrig) != 0 ) {
|
---|
130 | endflag = 0 ;
|
---|
131 | }
|
---|
132 |
|
---|
133 | }
|
---|
134 |
|
---|
135 | fclose ( unit_mtrig ) ;
|
---|
136 | }
|
---|
137 | else {
|
---|
138 | cout << "[MTrigger] use the standard values for MTrigger "<< endl ;
|
---|
139 | }
|
---|
140 |
|
---|
141 | cout << endl
|
---|
142 | << "[MTrigger] Setting up the MTrigger with this values "<< endl ;
|
---|
143 | if(bthresholdpixel){
|
---|
144 | cout<<endl
|
---|
145 | << "[MTrigger] ChannelThreshold from file: "<<input_thres
|
---|
146 | <<endl;
|
---|
147 | }
|
---|
148 | else{
|
---|
149 | cout << endl
|
---|
150 | << "[MTrigger] ChannelThreshold: " << threshold << " mV"
|
---|
151 | << endl ;
|
---|
152 | }
|
---|
153 | cout << "[MTrigger] Gate Length: " << gate_leng << " ns"
|
---|
154 | << endl ;
|
---|
155 | cout << "[MTrigger] Overlaping time: " << overlaping_time << " ns"
|
---|
156 | << endl ;
|
---|
157 | cout << "[MTrigger] Response FWHM: " << fwhm_resp << " ns"
|
---|
158 | << endl ;
|
---|
159 | cout << "[MTrigger] Response Amplitude: " << ampl_resp << " mV"
|
---|
160 | << endl ;
|
---|
161 | cout << "[MTrigger] Trigger Multiplicity: " << trigger_multi << " pixels"
|
---|
162 | << endl ;
|
---|
163 | cout << "[MTrigger] Trigger Topology: " << trigger_geometry
|
---|
164 | << endl ;
|
---|
165 |
|
---|
166 | cout << endl ;
|
---|
167 |
|
---|
168 |
|
---|
169 | //
|
---|
170 | // we have introduced individual thresholds for all pixels
|
---|
171 | //
|
---|
172 | FILE *unit_thres;
|
---|
173 |
|
---|
174 | if (bthresholdpixel == kTRUE) {
|
---|
175 | if ((unit_thres=fopen(input_thres, "r"))==0){
|
---|
176 | cout<<"WARNING: not able to read ..."<<input_thres<<endl;
|
---|
177 | cout<<"Threshold will be set to "<<threshold<<" for all pixels"<<endl;
|
---|
178 | for (Int_t k=0; k<pix; k++ ) {
|
---|
179 | chan_thres[k] = threshold ;
|
---|
180 | }
|
---|
181 | }
|
---|
182 | else {
|
---|
183 | for (i=0;i<pix;i++){
|
---|
184 | fscanf(unit_thres, "%f",&chan_thres[i]);
|
---|
185 | }
|
---|
186 | fclose (unit_thres);
|
---|
187 | }
|
---|
188 | }
|
---|
189 | else {
|
---|
190 | for (Int_t k=0; k<pix; k++ ) {
|
---|
191 | chan_thres[k] = threshold ;
|
---|
192 | }
|
---|
193 | }
|
---|
194 |
|
---|
195 |
|
---|
196 | //
|
---|
197 | // set up the response shape
|
---|
198 | //
|
---|
199 |
|
---|
200 | Float_t sigma ;
|
---|
201 | Float_t x, x0 ;
|
---|
202 |
|
---|
203 | sigma = fwhm_resp / 2.35 ;
|
---|
204 | x0 = 3*sigma ;
|
---|
205 |
|
---|
206 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
207 |
|
---|
208 | x = i * (1./((Float_t)SLICES_PER_NSEC))
|
---|
209 | + (1./( 2 * (Float_t)SLICES_PER_NSEC )) ;
|
---|
210 |
|
---|
211 | sing_resp[i] =
|
---|
212 | ampl_resp * expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ;
|
---|
213 |
|
---|
214 | }
|
---|
215 |
|
---|
216 | //
|
---|
217 | // look for the time between start of response function and the
|
---|
218 | // maximum value of the response function. This is needed by the
|
---|
219 | // member functions FillNSB() and FillStar()
|
---|
220 | //
|
---|
221 |
|
---|
222 | Int_t imax = 0 ;
|
---|
223 | Float_t max = 0. ;
|
---|
224 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
225 | if ( sing_resp[i] > max ) {
|
---|
226 | imax = i ;
|
---|
227 | max = sing_resp[i] ;
|
---|
228 | }
|
---|
229 | }
|
---|
230 |
|
---|
231 | peak_time = ( (Float_t) imax ) / ( (Float_t) SLICES_PER_NSEC ) ;
|
---|
232 |
|
---|
233 |
|
---|
234 | //
|
---|
235 | // the amplitude of one single photo electron is not a constant.
|
---|
236 | // There exists a measured distribution from Razmik. This distribution
|
---|
237 | // is used to simulate the noise of the amplitude.
|
---|
238 | // For this a histogramm (histPmt) is created and filled with the
|
---|
239 | // values.
|
---|
240 | //
|
---|
241 |
|
---|
242 | histPmt = new TH1F ("histPmt","Noise of PMT", 40, 0., 40.) ;
|
---|
243 |
|
---|
244 | Stat_t ValRazmik[41] = { 0., 2.14, 2.06, 2.05, 2.05, 2.06, 2.07, 2.08, 2.15,
|
---|
245 | 2.27, 2.40, 2.48, 2.55, 2.50, 2.35, 2.20, 2.10,
|
---|
246 | 1.90, 1.65, 1.40, 1.25, 1.00, 0.80, 0.65, 0.50,
|
---|
247 | 0.35, 0.27, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10,
|
---|
248 | 0.08, 0.06, 0.04, 0.02, 0.01, 0.005,0.003, 0.001} ;
|
---|
249 |
|
---|
250 | histMean = histPmt->GetMean() ;
|
---|
251 |
|
---|
252 | for (i=0;i<41;i++){
|
---|
253 | histPmt->SetBinContent(i,ValRazmik[i]);
|
---|
254 | }
|
---|
255 |
|
---|
256 | histMean = histPmt->GetMean() ;
|
---|
257 |
|
---|
258 | //
|
---|
259 | // create the random generator for the Electronic Noise
|
---|
260 | //
|
---|
261 |
|
---|
262 | GenElec = new TRandom() ;
|
---|
263 |
|
---|
264 | GenElec->SetSeed(0);
|
---|
265 |
|
---|
266 | //
|
---|
267 | // Read in the lookup table for NN trigger
|
---|
268 | //
|
---|
269 |
|
---|
270 | FILE *unit ;
|
---|
271 | int id ;
|
---|
272 |
|
---|
273 | i = 0 ;
|
---|
274 |
|
---|
275 | if ( (unit = fopen("../include-MTrigger/TABLE_NEXT_NEIGHBOUR", "r" )) == 0 ) {
|
---|
276 | cout << "ERROR: not able to read ../include-MTrigger/TABLE_NEXT_NEIGHBOUR"
|
---|
277 | << endl ;
|
---|
278 | exit(123) ;
|
---|
279 | }
|
---|
280 | else {
|
---|
281 | while ( i < pix )
|
---|
282 | {
|
---|
283 | fscanf ( unit, " %d", &id ) ;
|
---|
284 |
|
---|
285 | for ( Int_t k=0; k<6; k++ ) {
|
---|
286 | fscanf ( unit, "%d ", &NN[k][i] ) ;
|
---|
287 | }
|
---|
288 | i++ ;
|
---|
289 | }
|
---|
290 |
|
---|
291 | fclose (unit) ;
|
---|
292 | }
|
---|
293 |
|
---|
294 |
|
---|
295 | //
|
---|
296 | // Read in the lookup table for trigger cells
|
---|
297 | //
|
---|
298 |
|
---|
299 | i = 0 ;
|
---|
300 |
|
---|
301 | if ( (unit = fopen("../include-MTrigger/TABLE_PIXELS_IN_CELLS", "r" )) == 0 ) {
|
---|
302 | cout << "ERROR: not able to read ../include-MTrigger/TABLE_PIXELS_IN_CELLS"
|
---|
303 | << endl ;
|
---|
304 | exit(123) ;
|
---|
305 | }
|
---|
306 | else {
|
---|
307 | while ( i < pix )
|
---|
308 | {
|
---|
309 | for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
|
---|
310 | TC[k][i]=kFALSE;
|
---|
311 | }
|
---|
312 | i++ ;
|
---|
313 | }
|
---|
314 | while ( feof(unit) == 0 ) {
|
---|
315 | for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
|
---|
316 | fscanf ( unit, "%d ", &i ) ;
|
---|
317 | if ((i-1)<pix)
|
---|
318 | TC[k][i-1]=kTRUE;
|
---|
319 | }
|
---|
320 | }
|
---|
321 | fclose (unit) ;
|
---|
322 | }
|
---|
323 |
|
---|
324 |
|
---|
325 | //
|
---|
326 | //
|
---|
327 | // set all the booleans used to FALSE, indicating that the pixel is not
|
---|
328 | // used in this event.
|
---|
329 | //
|
---|
330 |
|
---|
331 | for ( i =0 ; i <pix ; i++ ) {
|
---|
332 | used [i] = kFALSE ;
|
---|
333 | dknt [i] = kFALSE ;
|
---|
334 |
|
---|
335 | nphotshow[i] = 0 ;
|
---|
336 | nphotnsb [i] = 0 ;
|
---|
337 | nphotstar[i] = 0 ;
|
---|
338 |
|
---|
339 | baseline[i] = 0 ;
|
---|
340 | }
|
---|
341 |
|
---|
342 | for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
343 | sum_d_sig[ii] = 0. ;
|
---|
344 | }
|
---|
345 |
|
---|
346 | //
|
---|
347 | // set the information about the Different Level Triggers to zero
|
---|
348 | //
|
---|
349 |
|
---|
350 | nZero = nFirst = nSecond = 0 ;
|
---|
351 |
|
---|
352 | for (ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
353 | SlicesZero[ii] = kFALSE;
|
---|
354 | }
|
---|
355 |
|
---|
356 | for ( i = 0 ; i < 5 ; i++) {
|
---|
357 | SlicesFirst[i] = -50 ;
|
---|
358 | SlicesSecond[i] = -50 ;
|
---|
359 | PixelsFirst[i] = -1;
|
---|
360 | PixelsSecond[i] = -1;
|
---|
361 | }
|
---|
362 |
|
---|
363 | cout << " end of MTrigger::MTrigger()" << endl ;
|
---|
364 | }
|
---|
365 |
|
---|
366 | MTrigger::MTrigger(Int_t pix, MGeomCam *camgeom,
|
---|
367 | float gate, float overt, float ampl, float fwhm) {
|
---|
368 | // ============================================================
|
---|
369 | //
|
---|
370 | // constructor
|
---|
371 | //
|
---|
372 | // The procedure is the following:
|
---|
373 | //
|
---|
374 | // 1. Allocation of some memory needed
|
---|
375 | // 2. some parameters of the trigger are set.
|
---|
376 | // 3. Then the all signals are set to zero
|
---|
377 |
|
---|
378 | Int_t i, ii ;
|
---|
379 |
|
---|
380 | Float_t threshold ;
|
---|
381 |
|
---|
382 | // Number of pixels in the trigger region
|
---|
383 | pixnum=pix;
|
---|
384 |
|
---|
385 | //
|
---|
386 | // allocate the memory for the 2dim arrays (a_sig, d_sig )
|
---|
387 | //
|
---|
388 |
|
---|
389 | used = new Bool_t[pix];
|
---|
390 | nphotshow = new Int_t[pix];
|
---|
391 | nphotnsb = new Int_t[pix];
|
---|
392 | nphotstar = new Int_t[pix];
|
---|
393 | a_sig = new Float_t * [pix];
|
---|
394 | d_sig = new Float_t * [pix];
|
---|
395 | baseline = new Float_t[pix];
|
---|
396 | dknt = new Bool_t[pix];
|
---|
397 | noise = new Float_t[TRIGGER_TIME_SLICES*1001];
|
---|
398 | chan_thres = new Float_t[pix];
|
---|
399 | for(Int_t j=0;j<6;j++)
|
---|
400 | NN[j] = new Int_t[pix];
|
---|
401 | for(Int_t j=0;j<TRIGGER_CELLS;j++)
|
---|
402 | TC[j] = new Int_t[pix];
|
---|
403 |
|
---|
404 | for( Int_t j=0; j<pix; j++ ) {
|
---|
405 |
|
---|
406 | a_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
|
---|
407 |
|
---|
408 | d_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
|
---|
409 | }
|
---|
410 |
|
---|
411 | //
|
---|
412 | // set the values for the standard response pulse
|
---|
413 | //
|
---|
414 |
|
---|
415 | fwhm_resp = fwhm ;
|
---|
416 | ampl_resp = ampl ;
|
---|
417 |
|
---|
418 | overlaping_time = overt;
|
---|
419 |
|
---|
420 |
|
---|
421 | threshold = CHANNEL_THRESHOLD ;
|
---|
422 |
|
---|
423 |
|
---|
424 | gate_leng = gate ;
|
---|
425 | trigger_multi = TRIGGER_MULTI ;
|
---|
426 | trigger_geometry = TRIGGER_GEOM ;
|
---|
427 |
|
---|
428 | cout << endl
|
---|
429 | << "[MTrigger] Setting up the MTrigger with this values "<< endl ;
|
---|
430 | cout << "[MTrigger] Gate Length: " << gate_leng << " ns"
|
---|
431 | << endl ;
|
---|
432 | cout << "[MTrigger] Overlaping time: " << overlaping_time << " ns"
|
---|
433 | << endl ;
|
---|
434 | cout << "[MTrigger] Response FWHM: " << fwhm_resp << " ns"
|
---|
435 | << endl ;
|
---|
436 | cout << "[MTrigger] Response Amplitude: " << ampl_resp << " mV"
|
---|
437 | << endl ;
|
---|
438 | cout << endl ;
|
---|
439 |
|
---|
440 | for (Int_t k=0; k<pixnum; k++ ) {
|
---|
441 | chan_thres[k] = threshold ;
|
---|
442 | }
|
---|
443 |
|
---|
444 | //
|
---|
445 | // set up the response shape
|
---|
446 | //
|
---|
447 |
|
---|
448 | Float_t sigma ;
|
---|
449 | Float_t x, x0 ;
|
---|
450 |
|
---|
451 | sigma = fwhm_resp / 2.35 ;
|
---|
452 | x0 = 3*sigma ;
|
---|
453 |
|
---|
454 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
455 |
|
---|
456 | x = i * (1./((Float_t)SLICES_PER_NSEC))
|
---|
457 | + (1./( 2 * (Float_t)SLICES_PER_NSEC )) ;
|
---|
458 |
|
---|
459 | sing_resp[i] =
|
---|
460 | ampl_resp * expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ;
|
---|
461 |
|
---|
462 | }
|
---|
463 |
|
---|
464 | //
|
---|
465 | // look for the time between start of response function and the
|
---|
466 | // maximum value of the response function. This is needed by the
|
---|
467 | // member functions FillNSB() and FillStar()
|
---|
468 | //
|
---|
469 |
|
---|
470 | Int_t imax = 0 ;
|
---|
471 | Float_t max = 0. ;
|
---|
472 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
473 | if ( sing_resp[i] > max ) {
|
---|
474 | imax = i ;
|
---|
475 | max = sing_resp[i] ;
|
---|
476 | }
|
---|
477 | }
|
---|
478 |
|
---|
479 | peak_time = ( (Float_t) imax ) / ( (Float_t) SLICES_PER_NSEC ) ;
|
---|
480 |
|
---|
481 | //
|
---|
482 | // the amplitude of one single photo electron is not a constant.
|
---|
483 | // There exists a measured distribution from Razmik. This distribution
|
---|
484 | // is used to simulate the noise of the amplitude.
|
---|
485 | // For this a histogramm (histPmt) is created and filled with the
|
---|
486 | // values.
|
---|
487 | //
|
---|
488 |
|
---|
489 | histPmt = new TH1F ("histPmt","Noise of PMT", 40, 0., 40.) ;
|
---|
490 |
|
---|
491 | Stat_t ValRazmik[41] = { 0., 2.14, 2.06, 2.05, 2.05, 2.06, 2.07, 2.08, 2.15,
|
---|
492 | 2.27, 2.40, 2.48, 2.55, 2.50, 2.35, 2.20, 2.10,
|
---|
493 | 1.90, 1.65, 1.40, 1.25, 1.00, 0.80, 0.65, 0.50,
|
---|
494 | 0.35, 0.27, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10,
|
---|
495 | 0.08, 0.06, 0.04, 0.02, 0.01, 0.005,0.003, 0.001} ;
|
---|
496 |
|
---|
497 | histMean = histPmt->GetMean() ;
|
---|
498 |
|
---|
499 | for (i=0;i<41;i++){
|
---|
500 | histPmt->SetBinContent(i,ValRazmik[i]);
|
---|
501 | }
|
---|
502 |
|
---|
503 | histMean = histPmt->GetMean() ;
|
---|
504 |
|
---|
505 | //
|
---|
506 | // create the random generator for the Electronic Noise
|
---|
507 | //
|
---|
508 |
|
---|
509 | GenElec = new TRandom() ;
|
---|
510 |
|
---|
511 | //
|
---|
512 | // Read in the lookup table for NN trigger
|
---|
513 | //
|
---|
514 |
|
---|
515 | #ifndef __STARRESPO__
|
---|
516 | for(i=0; i < pixnum;i++ )
|
---|
517 | {
|
---|
518 | MGeomPix &pixel = (*camgeom)[i];
|
---|
519 | for ( Int_t k=0; k<6; k++ ) {
|
---|
520 | NN[k][i]=pixel.GetNeighbor(k);
|
---|
521 | }
|
---|
522 | }
|
---|
523 | #endif
|
---|
524 | //
|
---|
525 | // Read in the lookup table for trigger cells
|
---|
526 | //
|
---|
527 |
|
---|
528 | FILE *unit;
|
---|
529 |
|
---|
530 | i = 0 ;
|
---|
531 |
|
---|
532 | if ( (unit = fopen("../include-MTrigger/TABLE_PIXELS_IN_CELLS", "r" )) == 0 ) {
|
---|
533 | cout << "ERROR: not able to read ../include-MTrigger/TABLE_PIXELS_IN_CELLS"
|
---|
534 | << endl ;
|
---|
535 | exit(123) ;
|
---|
536 | }
|
---|
537 | else {
|
---|
538 | while ( i < pixnum )
|
---|
539 | {
|
---|
540 | for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
|
---|
541 | TC[k][i]=kFALSE;
|
---|
542 | }
|
---|
543 | i++ ;
|
---|
544 | }
|
---|
545 | while ( feof(unit) == 0 ) {
|
---|
546 | for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
|
---|
547 | fscanf ( unit, "%d ", &i ) ;
|
---|
548 | if((i-1)<pixnum)
|
---|
549 | TC[k][i-1]=kTRUE;
|
---|
550 | }
|
---|
551 | }
|
---|
552 | fclose (unit) ;
|
---|
553 | }
|
---|
554 |
|
---|
555 | //
|
---|
556 | //
|
---|
557 | // set all the booleans used to FALSE, indicating that the pixel is not
|
---|
558 | // used in this event.
|
---|
559 | //
|
---|
560 |
|
---|
561 | for ( i =0 ; i <pixnum ; i++ ) {
|
---|
562 | used [i] = kFALSE ;
|
---|
563 | dknt [i] = kFALSE ;
|
---|
564 |
|
---|
565 | nphotshow[i] = 0 ;
|
---|
566 | nphotnsb [i] = 0 ;
|
---|
567 | nphotstar[i] = 0 ;
|
---|
568 |
|
---|
569 | baseline[i] = 0 ;
|
---|
570 | }
|
---|
571 |
|
---|
572 | for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
573 | sum_d_sig[ii] = 0. ;
|
---|
574 | }
|
---|
575 |
|
---|
576 | //
|
---|
577 | // set the information about the Different Level Triggers to zero
|
---|
578 | //
|
---|
579 |
|
---|
580 | nZero = nFirst = nSecond = 0 ;
|
---|
581 |
|
---|
582 | for (ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
583 | SlicesZero[ii] = kFALSE;
|
---|
584 | }
|
---|
585 |
|
---|
586 | for ( i = 0 ; i < 5 ; i++) {
|
---|
587 | SlicesFirst[i] = -50 ;
|
---|
588 | SlicesSecond[i] = -50 ;
|
---|
589 | PixelsFirst[i] = -1;
|
---|
590 | PixelsSecond[i] = -1;
|
---|
591 | }
|
---|
592 | cout << " end of MTrigger::MTrigger()" << endl ;
|
---|
593 | }
|
---|
594 | MTrigger::MTrigger(Int_t pix,
|
---|
595 | float gate, float overt, float ampl, float fwhm) {
|
---|
596 | // ============================================================
|
---|
597 | //
|
---|
598 | // constructor
|
---|
599 | //
|
---|
600 | // The procedure is the following:
|
---|
601 | //
|
---|
602 | // 1. Allocation of some memory needed
|
---|
603 | // 2. some parameters of the trigger are set.
|
---|
604 | // 3. Then the all signals are set to zero
|
---|
605 |
|
---|
606 | Int_t i, ii ;
|
---|
607 |
|
---|
608 | Float_t threshold ;
|
---|
609 |
|
---|
610 | // Number of pixels in the trigger region
|
---|
611 | pixnum=pix;
|
---|
612 |
|
---|
613 | //
|
---|
614 | // allocate the memory for the 2dim arrays (a_sig, d_sig )
|
---|
615 | //
|
---|
616 |
|
---|
617 | used = new Bool_t[pix];
|
---|
618 | nphotshow = new Int_t[pix];
|
---|
619 | nphotnsb = new Int_t[pix];
|
---|
620 | nphotstar = new Int_t[pix];
|
---|
621 | a_sig = new Float_t * [pix];
|
---|
622 | d_sig = new Float_t * [pix];
|
---|
623 | baseline = new Float_t[pix];
|
---|
624 | dknt = new Bool_t[pix];
|
---|
625 | noise = new Float_t[TRIGGER_TIME_SLICES*1001];
|
---|
626 | chan_thres = new Float_t[pix];
|
---|
627 | for(Int_t j=0;j<6;j++)
|
---|
628 | NN[j] = new Int_t[pix];
|
---|
629 | for(Int_t j=0;j<TRIGGER_CELLS;j++)
|
---|
630 | TC[j] = new Int_t[pix];
|
---|
631 |
|
---|
632 | for( Int_t j=0; j<pix; j++ ) {
|
---|
633 |
|
---|
634 | a_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
|
---|
635 |
|
---|
636 | d_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
|
---|
637 | }
|
---|
638 |
|
---|
639 | //
|
---|
640 | // set the values for the standard response pulse
|
---|
641 | //
|
---|
642 |
|
---|
643 | fwhm_resp = fwhm ;
|
---|
644 | ampl_resp = ampl ;
|
---|
645 |
|
---|
646 | overlaping_time = overt;
|
---|
647 |
|
---|
648 |
|
---|
649 | threshold = CHANNEL_THRESHOLD ;
|
---|
650 |
|
---|
651 |
|
---|
652 | gate_leng = gate ;
|
---|
653 | trigger_multi = TRIGGER_MULTI ;
|
---|
654 | trigger_geometry = TRIGGER_GEOM ;
|
---|
655 |
|
---|
656 | cout << endl
|
---|
657 | << "[MTrigger] Setting up the MTrigger with this values "<< endl ;
|
---|
658 | cout << "[MTrigger] Gate Length: " << gate_leng << " ns"
|
---|
659 | << endl ;
|
---|
660 | cout << "[MTrigger] Overlaping time: " << overlaping_time << " ns"
|
---|
661 | << endl ;
|
---|
662 | cout << "[MTrigger] Response FWHM: " << fwhm_resp << " ns"
|
---|
663 | << endl ;
|
---|
664 | cout << "[MTrigger] Response Amplitude: " << ampl_resp << " mV"
|
---|
665 | << endl ;
|
---|
666 | cout << endl ;
|
---|
667 |
|
---|
668 | for (Int_t k=0; k<pixnum; k++ ) {
|
---|
669 | chan_thres[k] = threshold ;
|
---|
670 | }
|
---|
671 |
|
---|
672 | //
|
---|
673 | // set up the response shape
|
---|
674 | //
|
---|
675 |
|
---|
676 | Float_t sigma ;
|
---|
677 | Float_t x, x0 ;
|
---|
678 |
|
---|
679 | sigma = fwhm_resp / 2.35 ;
|
---|
680 | x0 = 3*sigma ;
|
---|
681 |
|
---|
682 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
683 |
|
---|
684 | x = i * (1./((Float_t)SLICES_PER_NSEC))
|
---|
685 | + (1./( 2 * (Float_t)SLICES_PER_NSEC )) ;
|
---|
686 |
|
---|
687 | sing_resp[i] =
|
---|
688 | ampl_resp * expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ;
|
---|
689 |
|
---|
690 | }
|
---|
691 |
|
---|
692 | //
|
---|
693 | // look for the time between start of response function and the
|
---|
694 | // maximum value of the response function. This is needed by the
|
---|
695 | // member functions FillNSB() and FillStar()
|
---|
696 | //
|
---|
697 |
|
---|
698 | Int_t imax = 0 ;
|
---|
699 | Float_t max = 0. ;
|
---|
700 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
701 | if ( sing_resp[i] > max ) {
|
---|
702 | imax = i ;
|
---|
703 | max = sing_resp[i] ;
|
---|
704 | }
|
---|
705 | }
|
---|
706 |
|
---|
707 | peak_time = ( (Float_t) imax ) / ( (Float_t) SLICES_PER_NSEC ) ;
|
---|
708 |
|
---|
709 | //
|
---|
710 | // the amplitude of one single photo electron is not a constant.
|
---|
711 | // There exists a measured distribution from Razmik. This distribution
|
---|
712 | // is used to simulate the noise of the amplitude.
|
---|
713 | // For this a histogramm (histPmt) is created and filled with the
|
---|
714 | // values.
|
---|
715 | //
|
---|
716 |
|
---|
717 | histPmt = new TH1F ("histPmt","Noise of PMT", 40, 0., 40.) ;
|
---|
718 |
|
---|
719 | Stat_t ValRazmik[41] = { 0., 2.14, 2.06, 2.05, 2.05, 2.06, 2.07, 2.08, 2.15,
|
---|
720 | 2.27, 2.40, 2.48, 2.55, 2.50, 2.35, 2.20, 2.10,
|
---|
721 | 1.90, 1.65, 1.40, 1.25, 1.00, 0.80, 0.65, 0.50,
|
---|
722 | 0.35, 0.27, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10,
|
---|
723 | 0.08, 0.06, 0.04, 0.02, 0.01, 0.005,0.003, 0.001} ;
|
---|
724 |
|
---|
725 | histMean = histPmt->GetMean() ;
|
---|
726 |
|
---|
727 | for (i=0;i<41;i++){
|
---|
728 | histPmt->SetBinContent(i,ValRazmik[i]);
|
---|
729 | }
|
---|
730 |
|
---|
731 | histMean = histPmt->GetMean() ;
|
---|
732 |
|
---|
733 | //
|
---|
734 | // create the random generator for the Electronic Noise
|
---|
735 | //
|
---|
736 |
|
---|
737 | GenElec = new TRandom() ;
|
---|
738 |
|
---|
739 | //
|
---|
740 | //
|
---|
741 | // set all the booleans used to FALSE, indicating that the pixel is not
|
---|
742 | // used in this event.
|
---|
743 | //
|
---|
744 |
|
---|
745 | for ( i =0 ; i <pixnum ; i++ ) {
|
---|
746 | used [i] = kFALSE ;
|
---|
747 | dknt [i] = kFALSE ;
|
---|
748 |
|
---|
749 | nphotshow[i] = 0 ;
|
---|
750 | nphotnsb [i] = 0 ;
|
---|
751 | nphotstar[i] = 0 ;
|
---|
752 |
|
---|
753 | baseline[i] = 0 ;
|
---|
754 | }
|
---|
755 |
|
---|
756 | for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
757 | sum_d_sig[ii] = 0. ;
|
---|
758 | }
|
---|
759 |
|
---|
760 | //
|
---|
761 | // set the information about the Different Level Triggers to zero
|
---|
762 | //
|
---|
763 |
|
---|
764 | nZero = nFirst = nSecond = 0 ;
|
---|
765 |
|
---|
766 | for (ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
767 | SlicesZero[ii] = kFALSE;
|
---|
768 | }
|
---|
769 |
|
---|
770 | for ( i = 0 ; i < 5 ; i++) {
|
---|
771 | SlicesFirst[i] = -50 ;
|
---|
772 | SlicesSecond[i] = -50 ;
|
---|
773 | PixelsFirst[i] = -1;
|
---|
774 | PixelsSecond[i] = -1;
|
---|
775 | }
|
---|
776 | cout << " end of MTrigger::MTrigger()" << endl ;
|
---|
777 | }
|
---|
778 |
|
---|
779 | MTrigger::~MTrigger() {
|
---|
780 | // ============================================================//
|
---|
781 | // destructor
|
---|
782 | //
|
---|
783 | int i;
|
---|
784 |
|
---|
785 | delete histPmt ;
|
---|
786 |
|
---|
787 | for(i=0;i<pixnum;i++){
|
---|
788 | //delete [] a_sig[i];
|
---|
789 | //delete [] d_sig[i];
|
---|
790 | }
|
---|
791 |
|
---|
792 | delete GenElec;
|
---|
793 | }
|
---|
794 |
|
---|
795 |
|
---|
796 | void MTrigger::Reset() {
|
---|
797 | // ============================================================
|
---|
798 | //
|
---|
799 | // reset all values of the signals to zero
|
---|
800 | //
|
---|
801 | Int_t i, ii ;
|
---|
802 |
|
---|
803 | for ( i =0 ; i <pixnum ; i++ ) {
|
---|
804 | used [i] = kFALSE ;
|
---|
805 | dknt [i] = kFALSE ;
|
---|
806 |
|
---|
807 | nphotshow[i] = 0 ;
|
---|
808 | nphotnsb [i] = 0 ;
|
---|
809 | nphotstar[i] = 0 ;
|
---|
810 | }
|
---|
811 |
|
---|
812 | for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
813 | sum_d_sig[ii] = 0. ;
|
---|
814 | }
|
---|
815 | }
|
---|
816 |
|
---|
817 | void MTrigger::ClearZero() {
|
---|
818 | //
|
---|
819 | // set the information about the Zero Level Trigger to zero
|
---|
820 | //
|
---|
821 |
|
---|
822 | Int_t i;
|
---|
823 |
|
---|
824 | nZero = 0 ;
|
---|
825 |
|
---|
826 | for (i=0 ; i<TRIGGER_TIME_SLICES; i++ ) {
|
---|
827 | SlicesZero[i] = kFALSE;
|
---|
828 | }
|
---|
829 |
|
---|
830 | }
|
---|
831 |
|
---|
832 | void MTrigger::ClearFirst() {
|
---|
833 | //
|
---|
834 | // set the information about the First Level Trigger to zero
|
---|
835 | //
|
---|
836 |
|
---|
837 | Int_t i;
|
---|
838 |
|
---|
839 | nFirst = 0 ;
|
---|
840 |
|
---|
841 | for ( i = 0 ; i < 5 ; i++) {
|
---|
842 | SlicesFirst[i] = -50 ;
|
---|
843 | PixelsFirst[i] = -1;
|
---|
844 | }
|
---|
845 | }
|
---|
846 |
|
---|
847 | Float_t MTrigger::FillShow(Int_t iPix, Float_t time) {
|
---|
848 | // ============================================================
|
---|
849 | //
|
---|
850 | // Fills the information of one single Phe electron that
|
---|
851 | // comes from the shower
|
---|
852 | //
|
---|
853 |
|
---|
854 | //
|
---|
855 | // First check the time
|
---|
856 | //
|
---|
857 |
|
---|
858 | if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
|
---|
859 | cout << " WARNING: time of phe out of time range: " << time << endl;
|
---|
860 | return 0. ;
|
---|
861 | }
|
---|
862 | else {
|
---|
863 | return ( Fill( iPix, time, CASE_SHOW ) ) ;
|
---|
864 | }
|
---|
865 | }
|
---|
866 |
|
---|
867 | Float_t MTrigger::FillNSB(Int_t iPix, Float_t time) {
|
---|
868 | // ============================================================
|
---|
869 | //
|
---|
870 | // Fills the information of one single Phe electron that
|
---|
871 | // comes from the shower
|
---|
872 | //
|
---|
873 |
|
---|
874 | //
|
---|
875 | // First check the time
|
---|
876 | //
|
---|
877 |
|
---|
878 | if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
|
---|
879 | cout << " WARNING: time of phe out of time range: " << time << endl;
|
---|
880 | return 0. ;
|
---|
881 | }
|
---|
882 | else {
|
---|
883 | return ( Fill( iPix, time - peak_time, CASE_NSB ) ) ;
|
---|
884 | }
|
---|
885 | }
|
---|
886 |
|
---|
887 | Float_t MTrigger::FillStar(Int_t iPix, Float_t time) {
|
---|
888 | // ============================================================
|
---|
889 | //
|
---|
890 | // Fills the information of one single Phe electron that
|
---|
891 | // comes from the shower
|
---|
892 | //
|
---|
893 |
|
---|
894 | //
|
---|
895 | // First check the time
|
---|
896 | //
|
---|
897 |
|
---|
898 | if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
|
---|
899 | cout << " WARNING: time of phe out of time range: " << time << endl;
|
---|
900 | return 0. ;
|
---|
901 | }
|
---|
902 | else {
|
---|
903 | return ( Fill( iPix, time - peak_time, CASE_STAR ) ) ;
|
---|
904 | }
|
---|
905 | }
|
---|
906 |
|
---|
907 | Float_t MTrigger::Fill( Int_t iPix, Float_t time, Int_t fall ) {
|
---|
908 | // ============================================================
|
---|
909 | //
|
---|
910 | // Fills the information in the array for the analog signal
|
---|
911 | //
|
---|
912 |
|
---|
913 | Float_t PmtAmp = 0 ; // Amplitude of the PMT signal (results from noise)
|
---|
914 |
|
---|
915 | if ( iPix < 0 ) {
|
---|
916 | cout << " ERROR: in MTrigger::Fill() " << endl ;
|
---|
917 | cout << " ERROR: Pixel Id < 0 ---> Exit " << endl ;
|
---|
918 | exit (1) ;
|
---|
919 | }
|
---|
920 | else if ( iPix >= CAMERA_PIXELS ) {
|
---|
921 | cout << " ERROR: in MTrigger::Fill() " << endl ;
|
---|
922 | cout << " ERROR: Pixel Id > CAMERA_PIXELS ---> Exit " << endl ;
|
---|
923 | exit (1) ;
|
---|
924 | }
|
---|
925 | else if ( iPix >= pixnum ) {
|
---|
926 | //
|
---|
927 | // We have not to fill information in the trigger part,
|
---|
928 | // but we must create the height of the puls going into
|
---|
929 | // the FADC simulation
|
---|
930 | //
|
---|
931 | PmtAmp = (histPmt->GetRandom()/histMean) ;
|
---|
932 |
|
---|
933 | //
|
---|
934 | // But we fill the information in the counters of phe's
|
---|
935 | //
|
---|
936 |
|
---|
937 | if ( fall == CASE_SHOW )
|
---|
938 | nphotshow[iPix]++ ;
|
---|
939 | else if ( fall == CASE_NSB )
|
---|
940 | nphotshow[iPix]++ ;
|
---|
941 | else if ( fall == CASE_STAR )
|
---|
942 | nphotstar[iPix]++ ;
|
---|
943 |
|
---|
944 |
|
---|
945 | }
|
---|
946 | else {
|
---|
947 | //
|
---|
948 | // we have a trigger pixel and we fill it
|
---|
949 | //
|
---|
950 | Int_t i ;
|
---|
951 |
|
---|
952 | //
|
---|
953 | // but at the beginning we must check if this pixel is
|
---|
954 | // hitted the first time
|
---|
955 | //
|
---|
956 |
|
---|
957 | if ( used[iPix] == kFALSE ) {
|
---|
958 | used [iPix] = kTRUE ;
|
---|
959 | // baseline[iPix] = 0. ;
|
---|
960 |
|
---|
961 | for (i=0; i < TRIGGER_TIME_SLICES; i++ ) {
|
---|
962 | a_sig[iPix][i] = 0. ;
|
---|
963 | d_sig[iPix][i] = 0. ;
|
---|
964 | }
|
---|
965 | }
|
---|
966 |
|
---|
967 | //
|
---|
968 | // get the randomized amplitude
|
---|
969 | //
|
---|
970 | PmtAmp = (histPmt->GetRandom()/histMean) ;
|
---|
971 |
|
---|
972 | //
|
---|
973 | // select the first slice to fill
|
---|
974 | //
|
---|
975 |
|
---|
976 | Int_t ichan = (Int_t) ( time * ((Float_t) SLICES_PER_NSEC) ) ;
|
---|
977 |
|
---|
978 | //
|
---|
979 | // look over the response signal and put it in the signal line
|
---|
980 | //
|
---|
981 |
|
---|
982 | for ( i = 0 ; i<RESPONSE_SLICES; i++ ) {
|
---|
983 |
|
---|
984 | if ( (ichan+i) >= 0 &&
|
---|
985 | (ichan+i) < TRIGGER_TIME_SLICES ) {
|
---|
986 | a_sig[iPix][ichan+i] += PmtAmp * sing_resp[i] ;
|
---|
987 | }
|
---|
988 | }
|
---|
989 |
|
---|
990 | //
|
---|
991 | // we fill the information in the counters of phe's
|
---|
992 | //
|
---|
993 |
|
---|
994 | if ( fall == CASE_SHOW )
|
---|
995 | nphotshow[iPix]++ ;
|
---|
996 | else if ( fall == CASE_NSB )
|
---|
997 | nphotshow[iPix]++ ;
|
---|
998 | else if ( fall == CASE_STAR )
|
---|
999 | nphotstar[iPix]++ ;
|
---|
1000 |
|
---|
1001 | //
|
---|
1002 | //
|
---|
1003 | return PmtAmp ;
|
---|
1004 | }
|
---|
1005 | return PmtAmp ;
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 |
|
---|
1009 | void MTrigger::AddNSB( Int_t iPix, Float_t resp[TRIGGER_TIME_SLICES]){
|
---|
1010 | // ================================================================
|
---|
1011 | //
|
---|
1012 | // Sets the information in the array for the analog signal
|
---|
1013 | // from a given array
|
---|
1014 | //
|
---|
1015 |
|
---|
1016 |
|
---|
1017 | if ( iPix < 0 ) {
|
---|
1018 | cout << " ERROR: in MTrigger::SetNSB() " << endl ;
|
---|
1019 | cout << " ERROR: Pixel Id < 0 ---> Exit " << endl ;
|
---|
1020 | exit (1) ;
|
---|
1021 | }
|
---|
1022 | else if ( iPix >= CAMERA_PIXELS ) {
|
---|
1023 | cout << " ERROR: in MTrigger::SetNSB() " << endl ;
|
---|
1024 | cout << " ERROR: Pixel Id > CAMERA_PIXELS ---> Exit " << endl ;
|
---|
1025 | exit (1) ;
|
---|
1026 | }
|
---|
1027 | else if ( iPix >= pixnum ) {
|
---|
1028 | //
|
---|
1029 | // We have not to fill information in the trigger part.
|
---|
1030 | //
|
---|
1031 | }
|
---|
1032 | else {
|
---|
1033 | //
|
---|
1034 | // we have a trigger pixel and we fill it
|
---|
1035 | //
|
---|
1036 | Int_t i ;
|
---|
1037 |
|
---|
1038 | //
|
---|
1039 | // but at the beginning we must check if this pixel is
|
---|
1040 | // hitted the first time
|
---|
1041 | //
|
---|
1042 |
|
---|
1043 | if ( used[iPix] == kFALSE ) {
|
---|
1044 | used [iPix] = kTRUE ;
|
---|
1045 |
|
---|
1046 | for (i=0; i < TRIGGER_TIME_SLICES; i++ ) {
|
---|
1047 | a_sig[iPix][i] = 0. ;
|
---|
1048 | d_sig[iPix][i] = 0. ;
|
---|
1049 | }
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | //
|
---|
1053 | // look over the response signal and put it in the signal line
|
---|
1054 | //
|
---|
1055 |
|
---|
1056 | for ( i = 0 ; i<TRIGGER_TIME_SLICES; i++ ) {
|
---|
1057 |
|
---|
1058 | a_sig[iPix][i] += resp[i];
|
---|
1059 | }
|
---|
1060 |
|
---|
1061 | }
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 | void MTrigger::SetElecNoise(Float_t factor){
|
---|
1065 |
|
---|
1066 | UInt_t i;
|
---|
1067 | Float_t rausch ;
|
---|
1068 |
|
---|
1069 | rausch = RESPONSE_AMPLITUDE * factor ;
|
---|
1070 |
|
---|
1071 | cout<<"MTrigger::SetElecNoise ... generating database for electronic noise."
|
---|
1072 | <<endl;
|
---|
1073 |
|
---|
1074 | for (i=0;i<TRIGGER_TIME_SLICES*1001;i++){
|
---|
1075 | noise[i]=GenElec->Gaus(0., rausch );
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 | cout<<"MTrigger::SetElecNoise ... done"<<endl;
|
---|
1079 |
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | void MTrigger::ElecNoise(Float_t factor) {
|
---|
1083 | // ============================================================
|
---|
1084 | //
|
---|
1085 | // adds the noise due to optronic and electronic
|
---|
1086 | // to the signal
|
---|
1087 | //
|
---|
1088 | Float_t rausch ;
|
---|
1089 |
|
---|
1090 | rausch = RESPONSE_AMPLITUDE * factor ;
|
---|
1091 |
|
---|
1092 | UInt_t startslice;
|
---|
1093 |
|
---|
1094 | for ( Int_t i=0 ; i < pixnum; i++ ) {
|
---|
1095 | //
|
---|
1096 | // but at the beginning we must check if this pixel is
|
---|
1097 | // hitted the first time
|
---|
1098 | //
|
---|
1099 | startslice=GenElec->Integer(TRIGGER_TIME_SLICES*1000);
|
---|
1100 |
|
---|
1101 | if ( used[i] == kFALSE ) {
|
---|
1102 | used [i] = kTRUE ;
|
---|
1103 |
|
---|
1104 | memcpy( (Float_t*)a_sig[i],
|
---|
1105 | (Float_t*)&noise[startslice],
|
---|
1106 | TRIGGER_TIME_SLICES*sizeof(Float_t));
|
---|
1107 | memset( (Float_t*)d_sig[i],
|
---|
1108 | 0,
|
---|
1109 | TRIGGER_TIME_SLICES*sizeof(Float_t));
|
---|
1110 |
|
---|
1111 | }
|
---|
1112 | //
|
---|
1113 | // Then the noise is introduced for each time slice
|
---|
1114 | //
|
---|
1115 | else
|
---|
1116 | for ( Int_t ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
1117 |
|
---|
1118 | a_sig [i][ii] += noise[startslice+ii] ;
|
---|
1119 |
|
---|
1120 | }
|
---|
1121 | }
|
---|
1122 | }
|
---|
1123 |
|
---|
1124 | void MTrigger::SetFwhm(Float_t fwhm){
|
---|
1125 | //===========================================================
|
---|
1126 | //
|
---|
1127 | // It sets the fwhm for the single phe signal and
|
---|
1128 | // updates the sing_resp for it
|
---|
1129 |
|
---|
1130 | Float_t sigma ;
|
---|
1131 | Float_t x, x0 ;
|
---|
1132 | Int_t i;
|
---|
1133 |
|
---|
1134 | fwhm_resp = fwhm;
|
---|
1135 |
|
---|
1136 | sigma = fwhm_resp / 2.35 ;
|
---|
1137 | x0 = 3*sigma ;
|
---|
1138 |
|
---|
1139 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
1140 |
|
---|
1141 | x = i * (1./((Float_t)SLICES_PER_NSEC))
|
---|
1142 | + (1./( 2 * (Float_t)SLICES_PER_NSEC )) ;
|
---|
1143 |
|
---|
1144 | sing_resp[i] =
|
---|
1145 | ampl_resp * expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ;
|
---|
1146 |
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 |
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 | void MTrigger::SetMultiplicity(Int_t multi){
|
---|
1153 | //=============================================================
|
---|
1154 | //
|
---|
1155 | // It sets the private member trigger_multi
|
---|
1156 |
|
---|
1157 | trigger_multi=multi;
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 | void MTrigger::SetTopology(Int_t topo){
|
---|
1161 | //=============================================================
|
---|
1162 | //
|
---|
1163 | // It sets the private member trigger_geometry
|
---|
1164 |
|
---|
1165 | trigger_geometry=topo;
|
---|
1166 | }
|
---|
1167 |
|
---|
1168 | void MTrigger::SetThreshold(Float_t thres[]){
|
---|
1169 | //=============================================================
|
---|
1170 | //
|
---|
1171 | // It sets the private member chan_thres[pixnum]
|
---|
1172 |
|
---|
1173 | Int_t i;
|
---|
1174 |
|
---|
1175 | for(i=0;i<pixnum;i++){
|
---|
1176 | chan_thres[i]=thres[i];
|
---|
1177 | }
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 |
|
---|
1181 | void MTrigger::CheckThreshold(float *thres, int cells){
|
---|
1182 | //=============================================================
|
---|
1183 | //
|
---|
1184 | // Set Right Discriminator threshold, taking into account trigger pixels
|
---|
1185 |
|
---|
1186 | FILE *unit;
|
---|
1187 |
|
---|
1188 | float thres_aux[CAMERA_PIXELS];
|
---|
1189 | int id;
|
---|
1190 |
|
---|
1191 | for (int i=0;i<CAMERA_PIXELS;i++){
|
---|
1192 | if(i<pixnum){
|
---|
1193 | thres_aux[i]=999999.99;
|
---|
1194 | thres[i]=thres[i];
|
---|
1195 | }
|
---|
1196 | else{
|
---|
1197 | thres_aux[i]=-10.0;
|
---|
1198 | thres[i]=-10.0;
|
---|
1199 | }
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 | if (cells==1){
|
---|
1203 | if((unit =fopen("../include-MTrigger/TABLE_PIXELS_IN_CELLS", "r" )) == 0 ){
|
---|
1204 | cout << "ERROR: not able to read ../include-MTrigger/TABLE_PIXELS_IN_CELLS"
|
---|
1205 | << endl ;
|
---|
1206 | exit(123) ;
|
---|
1207 | }
|
---|
1208 | else {
|
---|
1209 | while ( feof(unit) == 0 ) {
|
---|
1210 | for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
|
---|
1211 | fscanf ( unit, "%d ", &id ) ;
|
---|
1212 | if ((id-1)<pixnum)
|
---|
1213 | thres_aux[id-1]=thres[id-1];
|
---|
1214 | }
|
---|
1215 | }
|
---|
1216 | }
|
---|
1217 | fclose (unit) ;
|
---|
1218 |
|
---|
1219 | for (int i=0;i<CAMERA_PIXELS;i++){
|
---|
1220 | thres[i]=thres_aux[i];
|
---|
1221 | }
|
---|
1222 | }
|
---|
1223 |
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 | void MTrigger::ReadThreshold(char name[]){
|
---|
1227 | //=============================================================
|
---|
1228 | //
|
---|
1229 | // It reads values for threshold of each pixel from file name
|
---|
1230 |
|
---|
1231 | FILE *unit;
|
---|
1232 | Int_t i=0;
|
---|
1233 |
|
---|
1234 | if ((unit=fopen(name, "r"))==0){
|
---|
1235 | cout<<"WARNING: not able to read ..."<<name<<endl;
|
---|
1236 | }
|
---|
1237 | else {
|
---|
1238 | while (i<pixnum){
|
---|
1239 | fscanf(unit, "%f",&chan_thres[i++]);
|
---|
1240 | }
|
---|
1241 | fclose (unit);
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 | void MTrigger::GetResponse(Float_t *resp) {
|
---|
1247 | // ============================================================
|
---|
1248 | //
|
---|
1249 | // puts the standard response function into the array resp
|
---|
1250 |
|
---|
1251 | for ( Int_t i=0; i< RESPONSE_SLICES; i++ ) {
|
---|
1252 |
|
---|
1253 | resp[i] = sing_resp[i] ;
|
---|
1254 | }
|
---|
1255 |
|
---|
1256 | }
|
---|
1257 |
|
---|
1258 | void MTrigger::GetMapDiskriminator(Byte_t *map){
|
---|
1259 | //=============================================================
|
---|
1260 | //
|
---|
1261 | // Gives a map of the fired pixels (Bool_t dknt [pixnum])
|
---|
1262 | // in an array of Byte_t (each byte has the information for 8 pixels)
|
---|
1263 | //
|
---|
1264 |
|
---|
1265 | Int_t i,ii;
|
---|
1266 |
|
---|
1267 | for(i=0;i<pixnum/8+1;i++){
|
---|
1268 | map[i]=0;
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 | for(i=0;i<pixnum;i++){
|
---|
1272 | ii=(Int_t)i/8;
|
---|
1273 | if (dknt[i]==kTRUE){
|
---|
1274 | map[ii]=map[ii]+(Int_t)pow(2,i-ii*8);
|
---|
1275 | }
|
---|
1276 | }
|
---|
1277 | }
|
---|
1278 |
|
---|
1279 |
|
---|
1280 | void MTrigger::Diskriminate() {
|
---|
1281 | // ============================================================
|
---|
1282 | //
|
---|
1283 | // Diskriminates the analog signal
|
---|
1284 | //
|
---|
1285 | // one very important part is the calucaltion of the baseline
|
---|
1286 | // shift. Because of the AC coupling of the PMT, only the
|
---|
1287 | // fluctuations are interesting. If there are a lot of phe,
|
---|
1288 | // a so-called shift of the baseline occurs.
|
---|
1289 | //
|
---|
1290 |
|
---|
1291 | Int_t iM = 0 ;
|
---|
1292 | Int_t i, ii ;
|
---|
1293 |
|
---|
1294 |
|
---|
1295 | Int_t jmax = (Int_t) (gate_leng * SLICES_PER_NSEC ) ;
|
---|
1296 |
|
---|
1297 | //
|
---|
1298 | // first of all determine the integral of all signals to get
|
---|
1299 | // the baseline shift.
|
---|
1300 | //
|
---|
1301 |
|
---|
1302 | for ( i=0 ; i < pixnum ; i++ ) {
|
---|
1303 | if ( used[i] == kTRUE ) {
|
---|
1304 | baseline[i] = 0. ;
|
---|
1305 |
|
---|
1306 | for ( ii = 0 ; ii < TRIGGER_TIME_SLICES ; ii++ ) {
|
---|
1307 | baseline[i] += a_sig[i][ii] ;
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | baseline[i] = baseline[i] / ( (Float_t ) TRIGGER_TIME_SLICES) ;
|
---|
1311 |
|
---|
1312 | //
|
---|
1313 | // now correct the baseline shift in the analog signal!!
|
---|
1314 | //
|
---|
1315 | for ( ii = 0 ; ii < TRIGGER_TIME_SLICES ; ii++ ) {
|
---|
1316 | a_sig[i][ii] = a_sig[i][ii] - baseline[i] ;
|
---|
1317 | }
|
---|
1318 | }
|
---|
1319 | }
|
---|
1320 |
|
---|
1321 | //
|
---|
1322 | // now the diskrimination is coming
|
---|
1323 | //
|
---|
1324 | // take only that pixel which are used
|
---|
1325 | //
|
---|
1326 |
|
---|
1327 | for ( i=0 ; i < pixnum; i++ ) {
|
---|
1328 | if ( used [i] == kTRUE ) {
|
---|
1329 |
|
---|
1330 | for ( ii=1 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
1331 | //
|
---|
1332 | // first check if the signal is crossing the CHANNEL_THRESHOLD
|
---|
1333 | // form low to big signals
|
---|
1334 | //
|
---|
1335 |
|
---|
1336 | if ( a_sig[i][ii-1] < chan_thres[i] &&
|
---|
1337 | a_sig[i][ii] >= chan_thres[i] ) {
|
---|
1338 | {
|
---|
1339 | if ( dknt[i] == kFALSE ) {
|
---|
1340 | dknt [i] = kTRUE ;
|
---|
1341 | iM++ ;
|
---|
1342 | }
|
---|
1343 | // cout << " disk " << ii ;
|
---|
1344 | //
|
---|
1345 | // put the standard diskriminator signal in
|
---|
1346 | // the diskriminated signal
|
---|
1347 | //
|
---|
1348 | for ( Int_t j=0 ; j < jmax ; j++ ) {
|
---|
1349 |
|
---|
1350 | if ( ii+j < TRIGGER_TIME_SLICES ) {
|
---|
1351 | d_sig [i][ii+j] = 1. ;
|
---|
1352 | }
|
---|
1353 | }
|
---|
1354 | ii = ii + jmax ;
|
---|
1355 | }
|
---|
1356 | }
|
---|
1357 | else d_sig[i][ii]=0.;
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 | }
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 |
|
---|
1364 | void MTrigger::ShowSignal (MMcEvt *McEvt) {
|
---|
1365 | // ============================================================
|
---|
1366 | //
|
---|
1367 | // This method is used to book the histogramm to show the signal in
|
---|
1368 | // a special gui frame (class MGTriggerSignal). After the look onto the
|
---|
1369 | // signals for a better understanding of the things we will expect
|
---|
1370 | // the gui frame and all histogramms will be destroyed.
|
---|
1371 | //
|
---|
1372 |
|
---|
1373 | //
|
---|
1374 | // first of all create a list of the histograms to show
|
---|
1375 | //
|
---|
1376 | // take only that one with a entry
|
---|
1377 |
|
---|
1378 | TH1F *hist ;
|
---|
1379 | TH1F *dhist ;
|
---|
1380 | Char_t dumm[10];
|
---|
1381 | Char_t name[256];
|
---|
1382 |
|
---|
1383 | TObjArray *AList ;
|
---|
1384 | AList = new TObjArray(10) ;
|
---|
1385 |
|
---|
1386 | TObjArray *DList ;
|
---|
1387 | DList = new TObjArray(10) ;
|
---|
1388 |
|
---|
1389 | // the list of analog signal histograms
|
---|
1390 | // at the beginning we initalise 10 elements
|
---|
1391 | // but this array expand automaticly if neccessay
|
---|
1392 |
|
---|
1393 | Int_t ic = 0 ;
|
---|
1394 | for ( Int_t i=0 ; i < pixnum; i++ ) {
|
---|
1395 | if ( used [i] == kTRUE ) {
|
---|
1396 |
|
---|
1397 | sprintf (dumm, "A_%d", i ) ;
|
---|
1398 | sprintf (name, "analog %d", i ) ;
|
---|
1399 |
|
---|
1400 | hist = new TH1F(dumm, name, TRIGGER_TIME_SLICES, 0., TOTAL_TRIGGER_TIME);
|
---|
1401 | //
|
---|
1402 | // fill the histogram
|
---|
1403 | //
|
---|
1404 |
|
---|
1405 | for (Int_t ibin=1; ibin <=TRIGGER_TIME_SLICES; ibin++) {
|
---|
1406 | hist->SetBinContent (ibin, a_sig[i][ibin-1]) ;
|
---|
1407 | }
|
---|
1408 | hist->SetMaximum(8.);
|
---|
1409 | hist->SetMinimum(-8.);
|
---|
1410 | hist->SetStats(kFALSE);
|
---|
1411 |
|
---|
1412 | AList->Add(hist) ;
|
---|
1413 |
|
---|
1414 | sprintf (dumm, "D_%d", i ) ;
|
---|
1415 | sprintf (name, "digital %d", i ) ;
|
---|
1416 |
|
---|
1417 | dhist = new TH1F(dumm, name, TRIGGER_TIME_SLICES, 0., TOTAL_TRIGGER_TIME);
|
---|
1418 | if ( dknt[i] == kTRUE ) {
|
---|
1419 | //
|
---|
1420 | // fill the histogram of digital signal
|
---|
1421 | //
|
---|
1422 | for (Int_t ibin=1; ibin <=TRIGGER_TIME_SLICES; ibin++) {
|
---|
1423 | dhist->SetBinContent (ibin, d_sig[i][ibin-1]) ;
|
---|
1424 | dhist->SetStats(kFALSE);
|
---|
1425 | }
|
---|
1426 | }
|
---|
1427 | dhist->SetMaximum(1.5);
|
---|
1428 |
|
---|
1429 | DList->Add(dhist);
|
---|
1430 |
|
---|
1431 | ic++ ;
|
---|
1432 |
|
---|
1433 | }
|
---|
1434 | }
|
---|
1435 |
|
---|
1436 | //
|
---|
1437 | // create the Gui Tool
|
---|
1438 | //
|
---|
1439 | //
|
---|
1440 |
|
---|
1441 | new MGTriggerSignal(McEvt,
|
---|
1442 | AList,
|
---|
1443 | DList,
|
---|
1444 | gClient->GetRoot(),
|
---|
1445 | gClient->GetRoot(),
|
---|
1446 | 400, 400 ) ;
|
---|
1447 |
|
---|
1448 | //
|
---|
1449 | // delete the List of histogramms
|
---|
1450 | //
|
---|
1451 |
|
---|
1452 | AList->Delete() ;
|
---|
1453 | DList->Delete() ;
|
---|
1454 |
|
---|
1455 | delete AList ;
|
---|
1456 | delete DList ;
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 |
|
---|
1460 | Int_t MTrigger::ZeroLevel() {
|
---|
1461 | // ============================================================
|
---|
1462 | //
|
---|
1463 | // This is a level introduced just to speed up the program.
|
---|
1464 | // It makes sense to look for next neighbours only if there
|
---|
1465 | // are at least trigger_multi pixels with a diskriminator
|
---|
1466 | // signal.
|
---|
1467 | //
|
---|
1468 |
|
---|
1469 | //
|
---|
1470 | // first count the pixels with a diskriminator signal
|
---|
1471 | //
|
---|
1472 | Int_t iMul = 0 ;
|
---|
1473 | for ( Int_t iP =0 ; iP < pixnum; iP++ ) {
|
---|
1474 | //
|
---|
1475 | //
|
---|
1476 |
|
---|
1477 | if ( dknt[iP] == kTRUE ) {
|
---|
1478 | iMul++ ;
|
---|
1479 | }
|
---|
1480 | }
|
---|
1481 |
|
---|
1482 |
|
---|
1483 | //
|
---|
1484 | // only if there are at least more pixels than requested
|
---|
1485 | // it make sense to look into details
|
---|
1486 | if ( iMul >= trigger_multi ) {
|
---|
1487 | //
|
---|
1488 | // fill the sum signal of all diskriminator signals
|
---|
1489 | //
|
---|
1490 | for ( Int_t iP =0 ; iP < pixnum; iP++ ) {
|
---|
1491 | //
|
---|
1492 | //
|
---|
1493 | if ( dknt[iP] == kTRUE ) {
|
---|
1494 | //
|
---|
1495 | // sum it up
|
---|
1496 | //
|
---|
1497 | for (Int_t iS=0; iS< TRIGGER_TIME_SLICES; iS++ ) {
|
---|
1498 | //
|
---|
1499 | //
|
---|
1500 | sum_d_sig [iS] += d_sig[iP][iS] ;
|
---|
1501 | }
|
---|
1502 | }
|
---|
1503 | }
|
---|
1504 | //
|
---|
1505 | // run over the sum_d_sig and check each time slice
|
---|
1506 | //
|
---|
1507 | Int_t iReturn = 0 ;
|
---|
1508 |
|
---|
1509 | for (Int_t iS=0; iS< TRIGGER_TIME_SLICES; iS++ ) {
|
---|
1510 |
|
---|
1511 | if ( sum_d_sig[iS] >= trigger_multi ) {
|
---|
1512 | iReturn++ ;
|
---|
1513 | nZero++;
|
---|
1514 | SlicesZero[iS] = kTRUE ;
|
---|
1515 |
|
---|
1516 | }
|
---|
1517 | else SlicesZero[iS] = kFALSE;
|
---|
1518 | }
|
---|
1519 | return ( iReturn ) ;
|
---|
1520 | }
|
---|
1521 | else {
|
---|
1522 | return 0 ;
|
---|
1523 | }
|
---|
1524 | }
|
---|
1525 |
|
---|
1526 | Int_t MTrigger::FirstLevel() {
|
---|
1527 | //=================================================
|
---|
1528 | //
|
---|
1529 | // This is a level trigger which can look for several
|
---|
1530 | // multiplicities (trigger_multi)
|
---|
1531 | // and topologies (trigger_geometry)
|
---|
1532 | //
|
---|
1533 |
|
---|
1534 | Int_t iReturn = 0 ; // Return value for this function
|
---|
1535 |
|
---|
1536 | // Definition of needed variables
|
---|
1537 | Bool_t Muster[pixnum] ;
|
---|
1538 | Bool_t Neighb[pixnum] ;
|
---|
1539 | Int_t iMulti = 0 ;
|
---|
1540 |
|
---|
1541 | // We put several wrong topologies which we already know that they
|
---|
1542 | // are not possible. It can save time.
|
---|
1543 |
|
---|
1544 | if (trigger_geometry==0 && trigger_multi>7) {
|
---|
1545 | cout <<"You are looking for a topology that needs more than six neighbours of the same pixel"<<endl;
|
---|
1546 | cout <<" Topology "<<trigger_geometry<<" Multiplicity "<<trigger_multi<<endl;;
|
---|
1547 | return (kFALSE);
|
---|
1548 | }
|
---|
1549 |
|
---|
1550 | if (trigger_geometry==2 && trigger_multi<3) {
|
---|
1551 | cout<<"Closed pack geometry with multiplicity "<<trigger_multi<<" does not make sense, I'll check simple neihgbour condition"<<endl;
|
---|
1552 | trigger_geometry=1;
|
---|
1553 | }
|
---|
1554 | if (trigger_geometry>2) {
|
---|
1555 | cout << "This trigger topology is not implemented"<<endl;
|
---|
1556 | return (kFALSE);
|
---|
1557 | }
|
---|
1558 |
|
---|
1559 | //
|
---|
1560 | // loop over all ZeroLevel Trigger
|
---|
1561 | //
|
---|
1562 | // it is only neccessary to look after a ZeroLevel Trigger for
|
---|
1563 | // a FirstLevel (NextNeighbour) trigger.
|
---|
1564 | //
|
---|
1565 |
|
---|
1566 | if (nZero) {
|
---|
1567 |
|
---|
1568 | //
|
---|
1569 | // Then run over all slices
|
---|
1570 | //
|
---|
1571 |
|
---|
1572 | for ( Int_t iSli = 0;
|
---|
1573 | iSli < TRIGGER_TIME_SLICES; iSli++ ) {
|
---|
1574 |
|
---|
1575 | // Check if this time slice has more fired pixels than trigger_multi
|
---|
1576 |
|
---|
1577 | if (SlicesZero[iSli]){
|
---|
1578 | //
|
---|
1579 | // Loop over trigger cells. It is topology analisy,
|
---|
1580 | // therefore it is keep here after multiplicity and
|
---|
1581 | // threshold checks.
|
---|
1582 | //
|
---|
1583 |
|
---|
1584 | for(Int_t iCell=0; iCell<TRIGGER_CELLS; iCell++){
|
---|
1585 | //
|
---|
1586 | // then look in all pixel of that cell if the
|
---|
1587 | // diskriminated signal is 1
|
---|
1588 | //
|
---|
1589 | for ( Int_t iPix = 0 ; iPix < pixnum; iPix++ ) {
|
---|
1590 | Muster[iPix] = kFALSE ;
|
---|
1591 | Neighb[iPix] = kFALSE ;
|
---|
1592 | // Select pixels which are used and it the current cell
|
---|
1593 | if ( used [iPix] == kTRUE && TC[iCell][iPix]==kTRUE) {
|
---|
1594 | //
|
---|
1595 | // now check the diskriminated signal
|
---|
1596 | //
|
---|
1597 | if ( d_sig [iPix][iSli] > 0. ) {
|
---|
1598 | Muster[iPix] = kTRUE ;
|
---|
1599 | }
|
---|
1600 | }
|
---|
1601 | } // end of loop over the pixels
|
---|
1602 |
|
---|
1603 | //
|
---|
1604 | // Here we check which of the "muster" pixels will be fired for
|
---|
1605 | // the minimum required overlaping time
|
---|
1606 | //
|
---|
1607 |
|
---|
1608 | OverlapingTime(Muster, &Muster[0],iSli);
|
---|
1609 |
|
---|
1610 | //
|
---|
1611 | // here we have to look for the topologies
|
---|
1612 | //
|
---|
1613 |
|
---|
1614 | switch(trigger_geometry){
|
---|
1615 | case 0:{
|
---|
1616 |
|
---|
1617 | // It looks for a pixel above threshold which has
|
---|
1618 | // trigger_multi-1 neighbour pixels above threshold
|
---|
1619 |
|
---|
1620 | Bool_t Dummy[pixnum] ;
|
---|
1621 |
|
---|
1622 | // Loop over all pixels
|
---|
1623 | for (int j=0;j<pixnum;j++){
|
---|
1624 |
|
---|
1625 | for (int k=0; k<pixnum; k++){
|
---|
1626 | Neighb[k]=kFALSE;
|
---|
1627 |
|
---|
1628 | Dummy[k] = Muster[k] ;
|
---|
1629 | }
|
---|
1630 | if(Muster[j]){
|
---|
1631 | // If pixel is fired, it checks how many fired neighbours it has
|
---|
1632 | for (iMulti=1;iMulti<trigger_multi; iMulti++) {
|
---|
1633 | Neighb[j] = kTRUE ;
|
---|
1634 | Dummy[j] = kTRUE ;
|
---|
1635 | if (!PassNextNeighbour(Dummy, &Neighb[0])){
|
---|
1636 | break;
|
---|
1637 | }
|
---|
1638 | for (int k=0; k<pixnum; k++){
|
---|
1639 | if (Neighb[k]){
|
---|
1640 | Dummy[k]=kFALSE;
|
---|
1641 | Neighb[k]=kFALSE;
|
---|
1642 | }
|
---|
1643 | }
|
---|
1644 | }
|
---|
1645 | if (iMulti==trigger_multi ) {
|
---|
1646 | //
|
---|
1647 | // A NN-Trigger is detected at time Slice
|
---|
1648 | //
|
---|
1649 | PixelsFirst[nFirst] = j; // We save pixel that triggers
|
---|
1650 | SlicesFirst[nFirst++] = iSli ; // We save time when it triggers
|
---|
1651 | iReturn++ ;
|
---|
1652 | iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
|
---|
1653 | iCell=TRIGGER_CELLS; // We skip the remaining trigger cells
|
---|
1654 | break ;
|
---|
1655 | }
|
---|
1656 | }
|
---|
1657 | }
|
---|
1658 | break;
|
---|
1659 | };
|
---|
1660 |
|
---|
1661 | case 1:{
|
---|
1662 |
|
---|
1663 | // It looks for trigger_multi neighbour pixels above the
|
---|
1664 | // threshold.
|
---|
1665 |
|
---|
1666 | for (int j=0;j<pixnum;j++){
|
---|
1667 | if(Muster[j]){
|
---|
1668 | // It checks if you can find
|
---|
1669 | // trigger_multi fired neighbour pixels
|
---|
1670 | Neighb[j] = kTRUE ;
|
---|
1671 | for (iMulti=1;iMulti<trigger_multi; iMulti++) {
|
---|
1672 | if (!PassNextNeighbour(Muster, &Neighb[0]))
|
---|
1673 | break;
|
---|
1674 | }
|
---|
1675 | if (iMulti==trigger_multi ) {
|
---|
1676 | //
|
---|
1677 | // A NN-Trigger is detected at time Slice
|
---|
1678 | //
|
---|
1679 | PixelsFirst[nFirst] = j; // We save pixel that triggers
|
---|
1680 | SlicesFirst[nFirst++] = iSli ; // We save when it triggers
|
---|
1681 | iReturn++ ;
|
---|
1682 | iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
|
---|
1683 | iCell=TRIGGER_CELLS; // We skip the remaining trigger cells
|
---|
1684 | break ;
|
---|
1685 | }
|
---|
1686 | else {
|
---|
1687 | // We put Neighb to kFALSE to check an other pixel
|
---|
1688 | for (int k=0; k<pixnum; k++){
|
---|
1689 | if (Neighb[k]){
|
---|
1690 | Neighb[k]=kFALSE;
|
---|
1691 | }
|
---|
1692 | }
|
---|
1693 | }
|
---|
1694 | }
|
---|
1695 | }
|
---|
1696 | break;
|
---|
1697 | };
|
---|
1698 | case 2:{
|
---|
1699 |
|
---|
1700 | // It looks for trigger_multi closed pack neighbours
|
---|
1701 | // above threshold
|
---|
1702 | // Closed pack means that you can take out any pixel
|
---|
1703 | // and you will still get a trigger for trigger_multi -1
|
---|
1704 | // The algorithm is not perfect, there still somes cases
|
---|
1705 | // that are not really well treated
|
---|
1706 |
|
---|
1707 | Int_t closed_pack = 1;
|
---|
1708 |
|
---|
1709 | for (int j=0;j<pixnum;j++){
|
---|
1710 | if(Muster[j]){
|
---|
1711 | // It checks if there are trigger_multi
|
---|
1712 | // neighbours above threshold
|
---|
1713 |
|
---|
1714 | Neighb[j] = kTRUE ;
|
---|
1715 | iMulti=1;
|
---|
1716 |
|
---|
1717 | //while(PassNextNeighbour(Muster, &Neighb[0])) iMulti++;
|
---|
1718 | for (iMulti=1;iMulti<trigger_multi;iMulti++){
|
---|
1719 | if (!PassNextNeighbour(Muster, &Neighb[0]))
|
---|
1720 | break;
|
---|
1721 | }
|
---|
1722 |
|
---|
1723 | if (iMulti==trigger_multi ) {
|
---|
1724 | //
|
---|
1725 | // A NN-Trigger is detected at time Slice
|
---|
1726 | //
|
---|
1727 |
|
---|
1728 | // Check if there is closed pack topology
|
---|
1729 |
|
---|
1730 | Bool_t Aux1[pixnum];
|
---|
1731 | Bool_t Aux2[pixnum];
|
---|
1732 | for (int jj=0;jj<pixnum;jj++)
|
---|
1733 | Aux2[jj]=kFALSE;
|
---|
1734 |
|
---|
1735 | for (int i=0;i<pixnum;i++){
|
---|
1736 | if (Neighb[i]) {
|
---|
1737 | // Loop over pixels that achive neighbouring condition
|
---|
1738 |
|
---|
1739 | for (int jj=0;jj<pixnum;jj++) {
|
---|
1740 |
|
---|
1741 | Aux1[jj] = Neighb[jj] ; // huschel
|
---|
1742 | Aux2[jj]=kFALSE;
|
---|
1743 | }
|
---|
1744 |
|
---|
1745 | // It checks if taking out any of the pixels we lose
|
---|
1746 | // neighbouring condition for trigger_multi -1
|
---|
1747 |
|
---|
1748 | Aux1[i]=kFALSE;
|
---|
1749 | closed_pack=0;
|
---|
1750 | for (int jj=0;jj<pixnum;jj++) {
|
---|
1751 | if (Aux1[jj]==kTRUE){
|
---|
1752 | Aux2[jj]=kTRUE;
|
---|
1753 | for (iMulti=1;iMulti<(trigger_multi-1);iMulti++){
|
---|
1754 | if (!PassNextNeighbour(Aux1, &Aux2[0]))
|
---|
1755 | break;
|
---|
1756 | }
|
---|
1757 | if (iMulti==(trigger_multi-1)){
|
---|
1758 | // We found a NN trigger for trigger_multi -1
|
---|
1759 | // taking out pixel jj
|
---|
1760 | closed_pack=1;
|
---|
1761 | break;
|
---|
1762 | }
|
---|
1763 | Aux2[jj]=kFALSE;
|
---|
1764 | }
|
---|
1765 | }
|
---|
1766 | if (!closed_pack) break;
|
---|
1767 | // For some pixell we did not found NN condition
|
---|
1768 | // for trigger_multi -1
|
---|
1769 | }
|
---|
1770 | }
|
---|
1771 | if (closed_pack){
|
---|
1772 | PixelsFirst[nFirst] = j; // We save pixel that triggers
|
---|
1773 | SlicesFirst[nFirst++] = iSli ; // We save time when it triggers
|
---|
1774 | iReturn++ ;
|
---|
1775 | iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
|
---|
1776 | iCell=TRIGGER_CELLS; // We skip the remaining trigger cells
|
---|
1777 | break ;
|
---|
1778 | }
|
---|
1779 | else {
|
---|
1780 | for (int k=0; k<pixnum; k++){
|
---|
1781 | if (Neighb[k]){
|
---|
1782 | Neighb[k]=kFALSE;
|
---|
1783 | }
|
---|
1784 | }
|
---|
1785 | }
|
---|
1786 | } // end if trigger multiplicity achived
|
---|
1787 | else{
|
---|
1788 | for (int k=0; k<pixnum; k++)
|
---|
1789 | Neighb[k]=kFALSE;
|
---|
1790 | }
|
---|
1791 | } // end if pixel fired
|
---|
1792 | } // end loop trigger pixels
|
---|
1793 | break;
|
---|
1794 | }; // end case 2:
|
---|
1795 | default:{
|
---|
1796 | cout << "This topology is not implemented yet"<<endl;
|
---|
1797 | break;
|
---|
1798 | }
|
---|
1799 | }
|
---|
1800 | } //end loop over trigger cells.
|
---|
1801 | }
|
---|
1802 | } // end of loop over the slices
|
---|
1803 | } // end of conditional for a trigger Zero
|
---|
1804 |
|
---|
1805 | //
|
---|
1806 | // return the Number of FirstLevel Triggers
|
---|
1807 | //
|
---|
1808 | return iReturn ;
|
---|
1809 | }
|
---|
1810 |
|
---|
1811 |
|
---|
1812 | Bool_t MTrigger::PassNextNeighbour ( Bool_t m[], Bool_t *n) {
|
---|
1813 | //
|
---|
1814 | // This function is looking for a next neighbour of pixels in n[]
|
---|
1815 | // above triggers using a NNlookup table.
|
---|
1816 | // This table is builded by the default constructor
|
---|
1817 | //
|
---|
1818 |
|
---|
1819 | //
|
---|
1820 | // loop over all trigger pixels
|
---|
1821 | //
|
---|
1822 |
|
---|
1823 | Bool_t return_val = kFALSE;
|
---|
1824 |
|
---|
1825 | for ( Int_t i=0; i<pixnum; i++) {
|
---|
1826 | //
|
---|
1827 | // check if this pixel has a diskrminator signal
|
---|
1828 | // (this is inside n[] )
|
---|
1829 | //
|
---|
1830 |
|
---|
1831 | if ( n[i] && !return_val) {
|
---|
1832 |
|
---|
1833 | //
|
---|
1834 | // look in the next neighbours from the lookuptable
|
---|
1835 | //
|
---|
1836 |
|
---|
1837 | for ( Int_t kk=0; kk<6; kk++ ) {
|
---|
1838 | //
|
---|
1839 | // if the nextneighbour is outside the triggerarea do nothing
|
---|
1840 | //
|
---|
1841 | if (!return_val){
|
---|
1842 | if (NN[kk][i] >= pixnum ) {
|
---|
1843 |
|
---|
1844 | }
|
---|
1845 | // the nextneighbour is not inside the pixnum
|
---|
1846 | else {
|
---|
1847 | //
|
---|
1848 | // look if the boolean of nn pixels is true
|
---|
1849 | //
|
---|
1850 |
|
---|
1851 | if ( m[ NN[kk][i] ] && !n[NN[kk][i]] ) {
|
---|
1852 | n[NN[kk][i]]=kTRUE ;
|
---|
1853 | return_val =kTRUE;
|
---|
1854 | }
|
---|
1855 | }
|
---|
1856 | }
|
---|
1857 | else break;
|
---|
1858 | }
|
---|
1859 | }
|
---|
1860 | }
|
---|
1861 | return(return_val);
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | Float_t MTrigger::GetFirstLevelTime( Int_t il ){
|
---|
1865 |
|
---|
1866 | //=============================================================
|
---|
1867 | //
|
---|
1868 | // It gives the time for the il trigger at first level
|
---|
1869 |
|
---|
1870 | return((Float_t) ((Float_t) SlicesFirst[il]/((Float_t) SLICES_PER_NSEC)));
|
---|
1871 | }
|
---|
1872 |
|
---|
1873 | Int_t MTrigger::GetFirstLevelPixel( Int_t il ){
|
---|
1874 |
|
---|
1875 | //=============================================================
|
---|
1876 | //
|
---|
1877 | // It gives the pixel that triggers for the il trigger at first level
|
---|
1878 | return(PixelsFirst[il]);
|
---|
1879 | }
|
---|
1880 |
|
---|
1881 | void MTrigger::OverlapingTime ( Bool_t m[], Bool_t *n, Int_t ifSli){
|
---|
1882 |
|
---|
1883 | //============================================================
|
---|
1884 | //
|
---|
1885 | // It returns in n the pixels of m that are fired during the
|
---|
1886 | // required overlaping time for trigger after ifSli
|
---|
1887 |
|
---|
1888 | int i,j;
|
---|
1889 | int iNumSli;
|
---|
1890 |
|
---|
1891 | // Translation from ns to slices
|
---|
1892 | iNumSli=(int) (overlaping_time*SLICES_PER_NSEC);
|
---|
1893 | if (iNumSli<1) iNumSli=1;
|
---|
1894 |
|
---|
1895 | // Put pixels that fulfill the requirement in n
|
---|
1896 | for (i=0;i<pixnum;i++){
|
---|
1897 | if (m[i]==kTRUE){
|
---|
1898 | for(j=ifSli;j<ifSli+iNumSli;j++){
|
---|
1899 | if(!d_sig[i][j]){
|
---|
1900 | n[i]=kFALSE;
|
---|
1901 | break;
|
---|
1902 | }
|
---|
1903 | }
|
---|
1904 | }
|
---|
1905 | }
|
---|
1906 |
|
---|
1907 | }
|
---|
1908 |
|
---|
1909 |
|
---|
1910 |
|
---|