1 | /////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | // MTrigger
|
---|
4 | //
|
---|
5 | //
|
---|
6 | #include "MTrigger.hxx"
|
---|
7 |
|
---|
8 | #include "TROOT.h"
|
---|
9 | #include "TFile.h"
|
---|
10 | #include "TH1.h"
|
---|
11 | #include "TObjArray.h"
|
---|
12 | #include "MGTriggerSignal.hxx"
|
---|
13 |
|
---|
14 |
|
---|
15 | MTrigger::MTrigger() {
|
---|
16 | // ============================================================
|
---|
17 | //
|
---|
18 | // default constructor
|
---|
19 | //
|
---|
20 | // The procedure is the following:
|
---|
21 | //
|
---|
22 | // 1. Allocation of some memory needed
|
---|
23 | // 2. some parameters of the trigger are set to default.
|
---|
24 | // 3. if a File MTrigger.card exists in the current directory,
|
---|
25 | // this parameters of the trigger may be changed
|
---|
26 | // 4. Then the all signals are set to zero
|
---|
27 |
|
---|
28 | FILE *unit_mtrig ;
|
---|
29 | Int_t endflag = 1 ;
|
---|
30 | char datac[256] ;
|
---|
31 | char dummy[50] ;
|
---|
32 |
|
---|
33 | Float_t threshold ;
|
---|
34 |
|
---|
35 | //
|
---|
36 | // allocate the memory for the 2dim arrays (a_sig, d_sig )
|
---|
37 | //
|
---|
38 |
|
---|
39 | for( Int_t j=0; j<TRIGGER_PIXELS; j++ ) {
|
---|
40 |
|
---|
41 | a_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
|
---|
42 |
|
---|
43 | d_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
|
---|
44 | }
|
---|
45 |
|
---|
46 | //
|
---|
47 | // set the values for the standard response pulse
|
---|
48 | //
|
---|
49 |
|
---|
50 | fwhm_resp = RESPONSE_FWHM ;
|
---|
51 | ampl_resp = RESPONSE_AMPLITUDE ;
|
---|
52 |
|
---|
53 | threshold = CHANNEL_THRESHOLD ;
|
---|
54 |
|
---|
55 |
|
---|
56 | gate_leng = TRIGGER_GATE ;
|
---|
57 | trigger_multi = TRIGGER_MULTI ;
|
---|
58 | trigger_geometry = TRIGGER_GEOM ;
|
---|
59 |
|
---|
60 | //
|
---|
61 | // check if the file MTrigger.card exists
|
---|
62 | //
|
---|
63 |
|
---|
64 | if ( (unit_mtrig = fopen ("MTrigger.card", "r")) != 0 ) {
|
---|
65 | cout << "[MTrigger] use the values from MTrigger.card "<< endl ;
|
---|
66 |
|
---|
67 | while ( endflag == 1 ) {
|
---|
68 | //
|
---|
69 | //
|
---|
70 | fgets (datac, 255, unit_mtrig) ;
|
---|
71 | // printf ("--> %s <--", datac ) ;
|
---|
72 |
|
---|
73 | //
|
---|
74 | // now compare the line with controlcard words
|
---|
75 | //
|
---|
76 |
|
---|
77 | if ( strncmp (datac, "channel_threshold", 17 ) == 0 ) {
|
---|
78 | sscanf (datac, "%s %f", dummy, &threshold ) ;
|
---|
79 | }
|
---|
80 | else if ( strncmp (datac, "gate_length", 11 ) == 0 ) {
|
---|
81 | sscanf (datac, "%s %f", dummy, &gate_leng ) ;
|
---|
82 | }
|
---|
83 | else if ( strncmp (datac, "response_fwhm", 13 ) == 0 ) {
|
---|
84 | sscanf (datac, "%s %f", dummy, &fwhm_resp ) ;
|
---|
85 | }
|
---|
86 | else if ( strncmp (datac, "response_ampl", 13 ) == 0 ) {
|
---|
87 | sscanf (datac, "%s %f", dummy, &l_resp ) ;
|
---|
88 | }
|
---|
89 | else if ( strncmp (datac, "multiplicity", 12 ) == 0 ) {
|
---|
90 | sscanf (datac, "%s %f", dummy, &trigger_multi ) ;
|
---|
91 | }
|
---|
92 | else if ( strncmp (datac, "topology", 8 ) == 0 ) {
|
---|
93 | sscanf (datac, "%s %i", dummy, &trigger_geometry ) ;
|
---|
94 | }
|
---|
95 |
|
---|
96 | if ( feof(unit_mtrig) != 0 ) {
|
---|
97 | endflag = 0 ;
|
---|
98 | }
|
---|
99 |
|
---|
100 | }
|
---|
101 |
|
---|
102 | fclose ( unit_mtrig ) ;
|
---|
103 | }
|
---|
104 | else {
|
---|
105 | cout << "[MTrigger] use the standard values for MTrigger "<< endl ;
|
---|
106 | }
|
---|
107 |
|
---|
108 | cout << endl
|
---|
109 | << "[MTrigger] Setting up the MTrigger with this values "<< endl ;
|
---|
110 | cout << endl
|
---|
111 | << "[MTrigger] ChannelThreshold: " << threshold << " mV"
|
---|
112 | << endl ;
|
---|
113 |
|
---|
114 | cout << "[MTrigger] Gate Length: " << gate_leng << " ns"
|
---|
115 | << endl ;
|
---|
116 | cout << "[MTrigger] Response FWHM: " << fwhm_resp << " ns"
|
---|
117 | << endl ;
|
---|
118 | cout << "[MTrigger] Response Amplitude: " << ampl_resp << " mV"
|
---|
119 | << endl ;
|
---|
120 | cout << "[MTrigger] Trigger Multiplicity: " << trigger_multi << " pixels"
|
---|
121 | << endl ;
|
---|
122 | cout << "[MTrigger] Trigger Topology: " << trigger_geometry
|
---|
123 | << endl ;
|
---|
124 |
|
---|
125 | cout << endl ;
|
---|
126 |
|
---|
127 |
|
---|
128 | //
|
---|
129 | // we have introduced individual thresholds for all pixels
|
---|
130 | //
|
---|
131 | for (Int_t k=0; k<TRIGGER_PIXELS; k++ ) {
|
---|
132 | chan_thres[k] = threshold ;
|
---|
133 | }
|
---|
134 |
|
---|
135 | //
|
---|
136 | // set up the response shape
|
---|
137 | //
|
---|
138 | Int_t i, ii ;
|
---|
139 |
|
---|
140 | Float_t sigma ;
|
---|
141 | Float_t x, x0 ;
|
---|
142 |
|
---|
143 | sigma = fwhm_resp / 2.35 ;
|
---|
144 | x0 = 3*sigma ;
|
---|
145 |
|
---|
146 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
147 |
|
---|
148 | x = i * (1./((Float_t)SLICES_PER_NSEC))
|
---|
149 | + (1./( 2 * (Float_t)SLICES_PER_NSEC )) ;
|
---|
150 |
|
---|
151 | sing_resp[i] =
|
---|
152 | ampl_resp * expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ;
|
---|
153 |
|
---|
154 | // cout << i << " "
|
---|
155 | // << x << " "
|
---|
156 | // << sing_resp[i]
|
---|
157 | // << endl ;
|
---|
158 |
|
---|
159 |
|
---|
160 | }
|
---|
161 |
|
---|
162 | //
|
---|
163 | // look for the time between start of response function and the
|
---|
164 | // maximum value of the response function. This is needed by the
|
---|
165 | // member functions FillNSB() and FillStar()
|
---|
166 | //
|
---|
167 |
|
---|
168 | Int_t imax = 0 ;
|
---|
169 | Float_t max = 0. ;
|
---|
170 | for (i=0; i< RESPONSE_SLICES ; i++ ) {
|
---|
171 | if ( sing_resp[i] > max ) {
|
---|
172 | imax = i ;
|
---|
173 | max = sing_resp[i] ;
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | peak_time = ( (Float_t) imax ) / ( (Float_t) SLICES_PER_NSEC ) ;
|
---|
178 |
|
---|
179 |
|
---|
180 | //
|
---|
181 | // the amplitude of one single photo electron is not a constant.
|
---|
182 | // There exists a measured distribution from Razmik. This distribution
|
---|
183 | // is used to simulate the noise of the amplitude.
|
---|
184 | // For this a histogramm (histPmt) is created and filled with the
|
---|
185 | // values.
|
---|
186 | //
|
---|
187 |
|
---|
188 | histPmt = new TH1F ("histPmt","Noise of PMT", 40, 0., 40.) ;
|
---|
189 |
|
---|
190 | Stat_t ValRazmik[41] = { 0., 2.14, 2.06, 2.05, 2.05, 2.06, 2.07, 2.08, 2.15,
|
---|
191 | 2.27, 2.40, 2.48, 2.55, 2.50, 2.35, 2.20, 2.10,
|
---|
192 | 1.90, 1.65, 1.40, 1.25, 1.00, 0.80, 0.65, 0.50,
|
---|
193 | 0.35, 0.27, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10,
|
---|
194 | 0.08, 0.06, 0.04, 0.02, 0.01, 0.005,0.003, 0.001} ;
|
---|
195 |
|
---|
196 | histMean = histPmt->GetMean() ;
|
---|
197 |
|
---|
198 | histPmt->SetContent( ValRazmik) ;
|
---|
199 |
|
---|
200 | histMean = histPmt->GetMean() ;
|
---|
201 |
|
---|
202 | //
|
---|
203 | // create the random generator for the Electronic Noise
|
---|
204 | //
|
---|
205 |
|
---|
206 | GenElec = new TRandom() ;
|
---|
207 |
|
---|
208 | //
|
---|
209 | // Read in the lookup table for NN trigger
|
---|
210 | //
|
---|
211 |
|
---|
212 | FILE *unit ;
|
---|
213 | int id ;
|
---|
214 |
|
---|
215 | i = 0 ;
|
---|
216 |
|
---|
217 | if ( (unit = fopen("../include-MTrigger/TABLE_NEXT_NEIGHBOUR", "r" )) == 0 ) {
|
---|
218 | cout << "ERROR: not able to read ../include-MTrigger/TABLE_NEXT_NEIGHBOUR"
|
---|
219 | << endl ;
|
---|
220 | exit(123) ;
|
---|
221 | }
|
---|
222 | else {
|
---|
223 | while ( i < TRIGGER_PIXELS )
|
---|
224 | {
|
---|
225 | fscanf ( unit, " %d", &id ) ;
|
---|
226 |
|
---|
227 | for ( Int_t k=0; k<6; k++ ) {
|
---|
228 | fscanf ( unit, "%d ", &NN[i][k] ) ;
|
---|
229 | }
|
---|
230 | i++ ;
|
---|
231 | }
|
---|
232 |
|
---|
233 | fclose (unit) ;
|
---|
234 | }
|
---|
235 |
|
---|
236 |
|
---|
237 | //
|
---|
238 | //
|
---|
239 | // set all the booleans used to FALSE, indicating that the pixel is not
|
---|
240 | // used in this event.
|
---|
241 | //
|
---|
242 |
|
---|
243 | for ( i =0 ; i <TRIGGER_PIXELS ; i++ ) {
|
---|
244 | used [i] = FALSE ;
|
---|
245 | dknt [i] = FALSE ;
|
---|
246 |
|
---|
247 | nphotshow[i] = 0 ;
|
---|
248 | nphotnsb [i] = 0 ;
|
---|
249 | nphotstar[i] = 0 ;
|
---|
250 |
|
---|
251 | baseline[i] = 0 ;
|
---|
252 | }
|
---|
253 |
|
---|
254 | for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
255 | sum_d_sig[ii] = 0. ;
|
---|
256 | }
|
---|
257 |
|
---|
258 | //
|
---|
259 | // set the information about the Different Level Triggers to zero
|
---|
260 | //
|
---|
261 |
|
---|
262 | nZero = nFirst = nSecond = 0 ;
|
---|
263 |
|
---|
264 | for (ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
265 | SlicesZero[ii] = FALSE;
|
---|
266 | }
|
---|
267 |
|
---|
268 | for ( i = 0 ; i < 5 ; i++) {
|
---|
269 | SlicesFirst[i] = 0 ;
|
---|
270 | SlicesSecond[i] = 0 ;
|
---|
271 | }
|
---|
272 | cout << " end of MTrigger::MTrigger()" << endl ;
|
---|
273 | }
|
---|
274 |
|
---|
275 | MTrigger::~MTrigger() {
|
---|
276 | // ============================================================//
|
---|
277 | // destructor
|
---|
278 | //
|
---|
279 | int i;
|
---|
280 | // delete histPmt ;
|
---|
281 | for(i=0;i<TRIGGER_PIXELS;i++){
|
---|
282 | delete [] a_sig[i];
|
---|
283 | delete [] d_sig[i];
|
---|
284 | }
|
---|
285 | delete GenElec;
|
---|
286 | }
|
---|
287 |
|
---|
288 |
|
---|
289 | void MTrigger::Reset() {
|
---|
290 | // ============================================================
|
---|
291 | //
|
---|
292 | // reset all values of the signals to zero
|
---|
293 | //
|
---|
294 | Int_t i, ii ;
|
---|
295 |
|
---|
296 | for ( i =0 ; i <TRIGGER_PIXELS ; i++ ) {
|
---|
297 | used [i] = FALSE ;
|
---|
298 | dknt [i] = FALSE ;
|
---|
299 |
|
---|
300 | nphotshow[i] = 0 ;
|
---|
301 | nphotnsb [i] = 0 ;
|
---|
302 | nphotstar[i] = 0 ;
|
---|
303 | }
|
---|
304 |
|
---|
305 | for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
306 | sum_d_sig[ii] = 0. ;
|
---|
307 | }
|
---|
308 |
|
---|
309 | //
|
---|
310 | // set the information about the Different Level Triggers to zero
|
---|
311 | //
|
---|
312 |
|
---|
313 | nZero = nFirst = nSecond = 0 ;
|
---|
314 |
|
---|
315 | for ( i = 0 ; i < 5 ; i++) {
|
---|
316 | SlicesZero[i] = 0 ;
|
---|
317 | SlicesFirst[i] = 0 ;
|
---|
318 | SlicesSecond[i] = 0 ;
|
---|
319 | }
|
---|
320 |
|
---|
321 | }
|
---|
322 |
|
---|
323 | Float_t MTrigger::FillShow(Int_t iPix, Float_t time) {
|
---|
324 | // ============================================================
|
---|
325 | //
|
---|
326 | // Fills the information of one single Phe electron that
|
---|
327 | // comes from the shower
|
---|
328 | //
|
---|
329 |
|
---|
330 | //
|
---|
331 | // First check the time
|
---|
332 | //
|
---|
333 |
|
---|
334 | if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
|
---|
335 | cout << " WARNING: time of phe out of time range: " << time << endl;
|
---|
336 | return 0. ;
|
---|
337 | }
|
---|
338 | else {
|
---|
339 | return ( Fill( iPix, time, CASE_SHOW ) ) ;
|
---|
340 | }
|
---|
341 | }
|
---|
342 |
|
---|
343 | Float_t MTrigger::FillNSB(Int_t iPix, Float_t time) {
|
---|
344 | // ============================================================
|
---|
345 | //
|
---|
346 | // Fills the information of one single Phe electron that
|
---|
347 | // comes from the shower
|
---|
348 | //
|
---|
349 |
|
---|
350 | //
|
---|
351 | // First check the time
|
---|
352 | //
|
---|
353 |
|
---|
354 | if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
|
---|
355 | cout << " WARNING: time of phe out of time range: " << time << endl;
|
---|
356 | return 0. ;
|
---|
357 | }
|
---|
358 | else {
|
---|
359 | return ( Fill( iPix, time - peak_time, CASE_NSB ) ) ;
|
---|
360 | }
|
---|
361 | }
|
---|
362 |
|
---|
363 | Float_t MTrigger::FillStar(Int_t iPix, Float_t time) {
|
---|
364 | // ============================================================
|
---|
365 | //
|
---|
366 | // Fills the information of one single Phe electron that
|
---|
367 | // comes from the shower
|
---|
368 | //
|
---|
369 |
|
---|
370 | //
|
---|
371 | // First check the time
|
---|
372 | //
|
---|
373 |
|
---|
374 | if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
|
---|
375 | cout << " WARNING: time of phe out of time range: " << time << endl;
|
---|
376 | return 0. ;
|
---|
377 | }
|
---|
378 | else {
|
---|
379 | return ( Fill( iPix, time - peak_time, CASE_STAR ) ) ;
|
---|
380 | }
|
---|
381 | }
|
---|
382 |
|
---|
383 | Float_t MTrigger::Fill( Int_t iPix, Float_t time, Int_t fall ) {
|
---|
384 | // ============================================================
|
---|
385 | //
|
---|
386 | // Fills the information in the array for the analog signal
|
---|
387 | //
|
---|
388 |
|
---|
389 | Float_t PmtAmp = 0 ; // Amplitude of the PMT signal (results from noise)
|
---|
390 |
|
---|
391 | if ( iPix < 0 ) {
|
---|
392 | cout << " ERROR: in MTrigger::Fill() " << endl ;
|
---|
393 | cout << " ERROR: Pixel Id < 0 ---> Exit " << endl ;
|
---|
394 | exit (1) ;
|
---|
395 | }
|
---|
396 | else if ( iPix >= CAMERA_PIXELS ) {
|
---|
397 | cout << " ERROR: in MTrigger::Fill() " << endl ;
|
---|
398 | cout << " ERROR: Pixel Id > CAMERA_PIXELS ---> Exit " << endl ;
|
---|
399 | exit (1) ;
|
---|
400 | }
|
---|
401 | else if ( iPix >= TRIGGER_PIXELS ) {
|
---|
402 | //
|
---|
403 | // We have not to fill information in the trigger part,
|
---|
404 | // but we must create the height of the puls going into
|
---|
405 | // the FADC simulation
|
---|
406 | //
|
---|
407 | PmtAmp = (histPmt->GetRandom()/histMean) ;
|
---|
408 |
|
---|
409 | //
|
---|
410 | // But we fill the information in the counters of phe's
|
---|
411 | //
|
---|
412 |
|
---|
413 | if ( fall == CASE_SHOW )
|
---|
414 | nphotshow[iPix]++ ;
|
---|
415 | else if ( fall == CASE_NSB )
|
---|
416 | nphotshow[iPix]++ ;
|
---|
417 | else if ( fall == CASE_STAR )
|
---|
418 | nphotstar[iPix]++ ;
|
---|
419 |
|
---|
420 |
|
---|
421 | }
|
---|
422 | else {
|
---|
423 | //
|
---|
424 | // we have a trigger pixel and we fill it
|
---|
425 | //
|
---|
426 | Int_t i ;
|
---|
427 |
|
---|
428 | //
|
---|
429 | // but at the beginning we must check if this pixel is
|
---|
430 | // hitted the first time
|
---|
431 | //
|
---|
432 |
|
---|
433 | if ( used[iPix] == FALSE ) {
|
---|
434 | used [iPix] = TRUE ;
|
---|
435 | // baseline[iPix] = 0. ;
|
---|
436 |
|
---|
437 | for (i=0; i < TRIGGER_TIME_SLICES; i++ ) {
|
---|
438 | a_sig[iPix][i] = 0. ;
|
---|
439 | d_sig[iPix][i] = 0. ;
|
---|
440 | }
|
---|
441 | }
|
---|
442 |
|
---|
443 | //
|
---|
444 | // get the randomized amplitude
|
---|
445 | //
|
---|
446 | PmtAmp = (histPmt->GetRandom()/histMean) ;
|
---|
447 |
|
---|
448 | //
|
---|
449 | // select the first slice to fill
|
---|
450 | //
|
---|
451 |
|
---|
452 | Int_t ichan = (Int_t) ( time * ((Float_t) SLICES_PER_NSEC) ) ;
|
---|
453 |
|
---|
454 | //
|
---|
455 | // look over the response signal and put it in the signal line
|
---|
456 | //
|
---|
457 |
|
---|
458 | for ( i = 0 ; i<RESPONSE_SLICES; i++ ) {
|
---|
459 |
|
---|
460 | if ( (ichan+i) >= 0 &&
|
---|
461 | (ichan+i) < TRIGGER_TIME_SLICES ) {
|
---|
462 | a_sig[iPix][ichan+i] += PmtAmp * sing_resp[i] ;
|
---|
463 | }
|
---|
464 | }
|
---|
465 |
|
---|
466 | //
|
---|
467 | // we fill the information in the counters of phe's
|
---|
468 | //
|
---|
469 |
|
---|
470 | if ( fall == CASE_SHOW )
|
---|
471 | nphotshow[iPix]++ ;
|
---|
472 | else if ( fall == CASE_NSB )
|
---|
473 | nphotshow[iPix]++ ;
|
---|
474 | else if ( fall == CASE_STAR )
|
---|
475 | nphotstar[iPix]++ ;
|
---|
476 |
|
---|
477 | //
|
---|
478 | //
|
---|
479 | return PmtAmp ;
|
---|
480 | }
|
---|
481 | return PmtAmp ;
|
---|
482 | }
|
---|
483 |
|
---|
484 |
|
---|
485 |
|
---|
486 | void MTrigger::ElecNoise() {
|
---|
487 | // ============================================================
|
---|
488 | //
|
---|
489 | // adds the noise due to optronic and electronic
|
---|
490 | // to the signal
|
---|
491 | //
|
---|
492 | Float_t rausch ;
|
---|
493 |
|
---|
494 | rausch = RESPONSE_AMPLITUDE * 0.3 ;
|
---|
495 |
|
---|
496 | for ( Int_t i=0 ; i < TRIGGER_PIXELS; i++ ) {
|
---|
497 | if ( used [i] == TRUE ) {
|
---|
498 | //cout << "Pixel " << i << " used" ;
|
---|
499 |
|
---|
500 | for ( Int_t ii=1 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
501 |
|
---|
502 | a_sig [i][ii] += GenElec->Gaus(0., rausch ) ;
|
---|
503 |
|
---|
504 | }
|
---|
505 | }
|
---|
506 | }
|
---|
507 | }
|
---|
508 |
|
---|
509 | void MTrigger::Diskriminate() {
|
---|
510 | // ============================================================
|
---|
511 | //
|
---|
512 | // Diskriminates the analog signal
|
---|
513 | //
|
---|
514 | // one very important part is the calucaltion of the baseline
|
---|
515 | // shift. Because of the AC coupling of the PMT, only the
|
---|
516 | // fluctuations are interesting. If there are a lot of phe,
|
---|
517 | // a so-called shift of the baseline occurs.
|
---|
518 | //
|
---|
519 |
|
---|
520 | Int_t iM = 0 ;
|
---|
521 | Int_t i, ii ;
|
---|
522 |
|
---|
523 |
|
---|
524 | Int_t jmax = (Int_t) (gate_leng * SLICES_PER_NSEC ) ;
|
---|
525 |
|
---|
526 | //
|
---|
527 | // first of all determine the integral of all signals to get
|
---|
528 | // the baseline shift.
|
---|
529 | //
|
---|
530 |
|
---|
531 | for ( i=0 ; i < TRIGGER_PIXELS ; i++ ) {
|
---|
532 | if ( used[i] == TRUE ) {
|
---|
533 | baseline[i] = 0. ;
|
---|
534 |
|
---|
535 | for ( ii = 0 ; ii < TRIGGER_TIME_SLICES ; ii++ ) {
|
---|
536 | baseline[i] += a_sig[i][ii] ;
|
---|
537 | }
|
---|
538 |
|
---|
539 | baseline[i] = baseline[i] / ( (Float_t ) TRIGGER_TIME_SLICES) ;
|
---|
540 |
|
---|
541 | // cout << "Pixel " << i << " baseline " << baseline[i] <<endl ;
|
---|
542 |
|
---|
543 | //
|
---|
544 | // now correct the baseline shift in the analog signal!!
|
---|
545 | //
|
---|
546 | for ( ii = 0 ; ii < TRIGGER_TIME_SLICES ; ii++ ) {
|
---|
547 | a_sig[i][ii] = a_sig[i][ii] - baseline[i] ;
|
---|
548 | }
|
---|
549 | }
|
---|
550 | }
|
---|
551 |
|
---|
552 | //
|
---|
553 | // now the diskrimination is coming
|
---|
554 | //
|
---|
555 | // take only that pixel which are used
|
---|
556 | //
|
---|
557 |
|
---|
558 | for ( i=0 ; i < TRIGGER_PIXELS; i++ ) {
|
---|
559 | if ( used [i] == TRUE ) {
|
---|
560 |
|
---|
561 | for ( ii=1 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
|
---|
562 | //
|
---|
563 | // first check if the signal is crossing the CHANNEL_THRESHOLD
|
---|
564 | // form low to big signals
|
---|
565 | //
|
---|
566 |
|
---|
567 | if ( a_sig[i][ii-1] < chan_thres[i] &&
|
---|
568 | a_sig[i][ii] >= chan_thres[i] ) {
|
---|
569 | {
|
---|
570 | if ( dknt[i] == FALSE ) {
|
---|
571 | dknt [i] = TRUE ;
|
---|
572 | iM++ ;
|
---|
573 | }
|
---|
574 | // cout << " disk " << ii ;
|
---|
575 | //
|
---|
576 | // put the standard diskriminator signal in
|
---|
577 | // the diskriminated signal
|
---|
578 | //
|
---|
579 | for ( Int_t j=0 ; j < jmax ; j++ ) {
|
---|
580 |
|
---|
581 | if ( ii+j < TRIGGER_TIME_SLICES ) {
|
---|
582 | d_sig [i][ii+j] = 1. ;
|
---|
583 | }
|
---|
584 | }
|
---|
585 | ii = ii + jmax ;
|
---|
586 | }
|
---|
587 | }
|
---|
588 | else d_sig[i][ii]=0.;
|
---|
589 | }
|
---|
590 | }
|
---|
591 | }
|
---|
592 | }
|
---|
593 |
|
---|
594 |
|
---|
595 | void MTrigger::ShowSignal (MMcEvt *McEvt) {
|
---|
596 | // ============================================================
|
---|
597 | //
|
---|
598 | // This method is used to book the histogramm to show the signal in
|
---|
599 | // a special gui frame (class MGTriggerSignal). After the look onto the
|
---|
600 | // signals for a better understanding of the things we will expect
|
---|
601 | // the gui frame and all histogramms will be destroyed.
|
---|
602 | //
|
---|
603 |
|
---|
604 | //
|
---|
605 | // first of all create a list of the histograms to show
|
---|
606 | //
|
---|
607 | // take only that one with a entry
|
---|
608 |
|
---|
609 | TH1F *hist ;
|
---|
610 | TH1F *dhist ;
|
---|
611 | Char_t dumm[10];
|
---|
612 | Char_t name[256];
|
---|
613 |
|
---|
614 | TObjArray *AList ;
|
---|
615 | AList = new TObjArray(10) ;
|
---|
616 |
|
---|
617 | TObjArray *DList ;
|
---|
618 | DList = new TObjArray(10) ;
|
---|
619 |
|
---|
620 | // the list of analog signal histograms
|
---|
621 | // at the beginning we initalise 10 elements
|
---|
622 | // but this array expand automaticly if neccessay
|
---|
623 |
|
---|
624 | Int_t ic = 0 ;
|
---|
625 | for ( Int_t i=0 ; i < TRIGGER_PIXELS; i++ ) {
|
---|
626 | if ( used [i] == TRUE ) {
|
---|
627 |
|
---|
628 | sprintf (dumm, "A_%d", i ) ;
|
---|
629 | sprintf (name, "analog %d", i ) ;
|
---|
630 |
|
---|
631 | hist = new TH1F(dumm, name, TRIGGER_TIME_SLICES, 0., TOTAL_TRIGGER_TIME);
|
---|
632 | //
|
---|
633 | // fill the histogram
|
---|
634 | //
|
---|
635 |
|
---|
636 | for (Int_t ibin=1; ibin <=TRIGGER_TIME_SLICES; ibin++) {
|
---|
637 | hist->SetBinContent (ibin, a_sig[i][ibin-1]) ;
|
---|
638 | }
|
---|
639 | hist->SetMaximum(8.);
|
---|
640 | hist->SetMinimum(-8.);
|
---|
641 | hist->SetStats(kFALSE);
|
---|
642 |
|
---|
643 | AList->Add(hist) ;
|
---|
644 |
|
---|
645 | sprintf (dumm, "D_%d", i ) ;
|
---|
646 | sprintf (name, "digital %d", i ) ;
|
---|
647 |
|
---|
648 | dhist = new TH1F(dumm, name, TRIGGER_TIME_SLICES, 0., TOTAL_TRIGGER_TIME);
|
---|
649 | if ( dknt[i] == TRUE ) {
|
---|
650 | //
|
---|
651 | // fill the histogram of digital signal
|
---|
652 | //
|
---|
653 | for (Int_t ibin=1; ibin <=TRIGGER_TIME_SLICES; ibin++) {
|
---|
654 | dhist->SetBinContent (ibin, d_sig[i][ibin-1]) ;
|
---|
655 | dhist->SetStats(kFALSE);
|
---|
656 | }
|
---|
657 | }
|
---|
658 | dhist->SetMaximum(1.5);
|
---|
659 |
|
---|
660 | DList->Add(dhist);
|
---|
661 |
|
---|
662 | ic++ ;
|
---|
663 |
|
---|
664 | }
|
---|
665 | }
|
---|
666 |
|
---|
667 | //
|
---|
668 | // create the Gui Tool
|
---|
669 | //
|
---|
670 | //
|
---|
671 |
|
---|
672 | new MGTriggerSignal(McEvt,
|
---|
673 | AList,
|
---|
674 | DList,
|
---|
675 | gClient->GetRoot(),
|
---|
676 | gClient->GetRoot(),
|
---|
677 | 400, 400 ) ;
|
---|
678 |
|
---|
679 | //
|
---|
680 | // delete the List of histogramms
|
---|
681 | //
|
---|
682 |
|
---|
683 | AList->Delete() ;
|
---|
684 | DList->Delete() ;
|
---|
685 |
|
---|
686 | delete AList ;
|
---|
687 | delete DList ;
|
---|
688 | }
|
---|
689 |
|
---|
690 |
|
---|
691 | Int_t MTrigger::ZeroLevel() {
|
---|
692 | // ============================================================
|
---|
693 | //
|
---|
694 | // This is a level introduced just to speed up the program.
|
---|
695 | // It makes sense to look for next neighbours only if there
|
---|
696 | // are at least trigger_multi pixels with a diskriminator
|
---|
697 | // signal.
|
---|
698 | //
|
---|
699 |
|
---|
700 | //
|
---|
701 | // first count the pixels with a diskriminator signal
|
---|
702 | //
|
---|
703 | Int_t iMul = 0 ;
|
---|
704 | for ( Int_t iP =0 ; iP < TRIGGER_PIXELS; iP++ ) {
|
---|
705 | //
|
---|
706 | //
|
---|
707 | if ( dknt[iP] == TRUE ) {
|
---|
708 | iMul++ ;
|
---|
709 | }
|
---|
710 | }
|
---|
711 |
|
---|
712 | //
|
---|
713 | // only if there are at least more pixels than requested
|
---|
714 | // it make sense to look into details
|
---|
715 | if ( iMul >= trigger_multi ) {
|
---|
716 | //
|
---|
717 | // fill the sum signal of all diskriminator signals
|
---|
718 | //
|
---|
719 | for ( Int_t iP =0 ; iP < TRIGGER_PIXELS; iP++ ) {
|
---|
720 | //
|
---|
721 | //
|
---|
722 | if ( dknt[iP] == TRUE ) {
|
---|
723 | //
|
---|
724 | // sum it up
|
---|
725 | //
|
---|
726 | for (Int_t iS=0; iS< TRIGGER_TIME_SLICES; iS++ ) {
|
---|
727 | //
|
---|
728 | //
|
---|
729 | sum_d_sig [iS] += d_sig[iP][iS] ;
|
---|
730 | }
|
---|
731 | }
|
---|
732 | }
|
---|
733 | //
|
---|
734 | // run over the sum_d_sig and check each time slice
|
---|
735 | //
|
---|
736 | Int_t iReturn = 0 ;
|
---|
737 |
|
---|
738 | for (Int_t iS=0; iS< TRIGGER_TIME_SLICES; iS++ ) {
|
---|
739 |
|
---|
740 | if ( sum_d_sig[iS] >= trigger_multi ) {
|
---|
741 | iReturn++ ;
|
---|
742 | nZero++;
|
---|
743 | SlicesZero[iS] = TRUE ;
|
---|
744 |
|
---|
745 | }
|
---|
746 | else SlicesZero[iS] = FALSE;
|
---|
747 | }
|
---|
748 |
|
---|
749 | return ( iReturn ) ;
|
---|
750 | }
|
---|
751 | else {
|
---|
752 | return 0 ;
|
---|
753 | }
|
---|
754 | }
|
---|
755 |
|
---|
756 | Int_t MTrigger::FirstLevel() {
|
---|
757 | //=================================================
|
---|
758 | //
|
---|
759 | // This is a level trigger which can look for several
|
---|
760 | // multiplicities (trigger_multi)
|
---|
761 | // and topologies (trigger_geometry)
|
---|
762 | //
|
---|
763 |
|
---|
764 | Int_t iReturn = 0 ; // Return value for this function
|
---|
765 |
|
---|
766 | if ( nZero > 1 ) {
|
---|
767 | cout << " INFORMATION: more than one Zero Level TRIGGER " << endl ;
|
---|
768 | }
|
---|
769 |
|
---|
770 | // Definition of needed variables
|
---|
771 | Bool_t Muster[TRIGGER_PIXELS] ;
|
---|
772 | Bool_t Neighb[TRIGGER_PIXELS] ;
|
---|
773 | Int_t iMulti = 0 ;
|
---|
774 |
|
---|
775 | // We put several wrong topologies which we already know that they
|
---|
776 | // are not possible. It can save time.
|
---|
777 |
|
---|
778 | if (trigger_geometry==0 && trigger_multi>7) {
|
---|
779 | cout <<"You are lookiny for a topology that needs more than six neighbours of the same pixel"<<endl;
|
---|
780 | cout <<" Topology "<<trigger_geometry<<" Multiplicity "<<trigger_multi<<endl;;
|
---|
781 | return (kFALSE);
|
---|
782 | }
|
---|
783 |
|
---|
784 | if (trigger_geometry==2 && trigger_multi<3) {
|
---|
785 | cout<<"Closed pack geometry with multiplicity "<<trigger_multi<<" does not make sense"<<endl;
|
---|
786 | return (kFALSE);
|
---|
787 | }
|
---|
788 | if (trigger_geometry>2) {
|
---|
789 | cout << "This trigger topology is not implemented"<<endl;
|
---|
790 | return (kFALSE);
|
---|
791 | }
|
---|
792 |
|
---|
793 | //
|
---|
794 | // loop over all ZeroLevel Trigger
|
---|
795 | //
|
---|
796 | // it is only neccessary to look after a ZeroLevel Trigger for
|
---|
797 | // a FirstLevel (NextNeighbour) trigger.
|
---|
798 | //
|
---|
799 |
|
---|
800 | if (nZero) {
|
---|
801 |
|
---|
802 | //
|
---|
803 | // Then run over all slices
|
---|
804 | //
|
---|
805 |
|
---|
806 | for ( Int_t iSli = 0;
|
---|
807 | iSli < TRIGGER_TIME_SLICES; iSli++ ) {
|
---|
808 |
|
---|
809 | // Check if this time slice has more fired pixels than trigger_multi
|
---|
810 |
|
---|
811 | if (SlicesZero[iSli]){
|
---|
812 | //
|
---|
813 | // then look in all pixel if the diskriminated signal is 1
|
---|
814 | //
|
---|
815 |
|
---|
816 | for ( Int_t iPix = 0 ; iPix < TRIGGER_PIXELS; iPix++ ) {
|
---|
817 | Muster[iPix] = kFALSE ;
|
---|
818 | Neighb[iPix] = kFALSE ;
|
---|
819 | if ( used [iPix] == TRUE ) {
|
---|
820 | //
|
---|
821 | // now check the diskriminated signal
|
---|
822 | //
|
---|
823 | if ( d_sig [iPix][iSli] > 0. ) {
|
---|
824 |
|
---|
825 | Muster[iPix] = kTRUE ;
|
---|
826 | }
|
---|
827 | }
|
---|
828 | } // end of loop over the pixels
|
---|
829 |
|
---|
830 | //
|
---|
831 | // here we have to look for the topologies
|
---|
832 | //
|
---|
833 |
|
---|
834 | switch(trigger_geometry){
|
---|
835 | case 0:{
|
---|
836 |
|
---|
837 | // It looks for a pixel above threshold which has
|
---|
838 | // trigger_multi-1 neighbour pixels above threshold
|
---|
839 |
|
---|
840 | Bool_t Dummy[TRIGGER_PIXELS] ;
|
---|
841 |
|
---|
842 | // Loop over all pixels
|
---|
843 | for (int j=0;j<TRIGGER_PIXELS;j++){
|
---|
844 |
|
---|
845 | //
|
---|
846 | // I commented out this line here
|
---|
847 | // Dummy=Muster;
|
---|
848 |
|
---|
849 | for (int k=0; k<TRIGGER_PIXELS; k++){
|
---|
850 | Neighb[k]=kFALSE;
|
---|
851 |
|
---|
852 | Dummy[k] = Muster[k] ;
|
---|
853 | }
|
---|
854 | if(Muster[j]){
|
---|
855 | // If pixel is fired, it checks how many fired neighbours it has
|
---|
856 | for (iMulti=1;iMulti<trigger_multi; iMulti++) {
|
---|
857 | Neighb[j] = kTRUE ;
|
---|
858 | Dummy[j] = kTRUE ;
|
---|
859 | if (!PassNextNeighbour(Dummy, &Neighb[0])){
|
---|
860 | break;
|
---|
861 | }
|
---|
862 | for (int k=0; k<TRIGGER_PIXELS; k++){
|
---|
863 | if (Neighb[k]){
|
---|
864 | Dummy[k]=kFALSE;
|
---|
865 | Neighb[k]=kFALSE;
|
---|
866 | }
|
---|
867 | }
|
---|
868 | }
|
---|
869 | if (iMulti==trigger_multi ) {
|
---|
870 | //
|
---|
871 | // A NN-Trigger is detected at time Slice
|
---|
872 | //
|
---|
873 | SlicesFirst[nFirst++] = iSli ; // We save time when it triggers
|
---|
874 | iReturn++ ;
|
---|
875 | iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
|
---|
876 | break ;
|
---|
877 | }
|
---|
878 | }
|
---|
879 | }
|
---|
880 | break;
|
---|
881 | };
|
---|
882 |
|
---|
883 | case 1:{
|
---|
884 |
|
---|
885 | // It looks for trigger_multi neighbour pixels above the
|
---|
886 | // threshold.
|
---|
887 |
|
---|
888 | for (int j=0;j<TRIGGER_PIXELS;j++){
|
---|
889 | if(Muster[j]){
|
---|
890 | // It checks if you can find
|
---|
891 | // trigger_multi fired neighbour pixels
|
---|
892 | Neighb[j] = kTRUE ;
|
---|
893 | for (iMulti=1;iMulti<trigger_multi; iMulti++) {
|
---|
894 | if (!PassNextNeighbour(Muster, &Neighb[0]))
|
---|
895 | break;
|
---|
896 | }
|
---|
897 | if (iMulti==trigger_multi ) {
|
---|
898 | //
|
---|
899 | // A NN-Trigger is detected at time Slice
|
---|
900 | //
|
---|
901 | SlicesFirst[nFirst++] = iSli ; // We save when it triggers
|
---|
902 | iReturn++ ;
|
---|
903 | iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
|
---|
904 | break ;
|
---|
905 | }
|
---|
906 | else {
|
---|
907 | // We put Neighb to kFALSE to check an other pixel
|
---|
908 | for (int k=0; k<TRIGGER_PIXELS; k++){
|
---|
909 | if (Neighb[k]){
|
---|
910 | Neighb[k]=kFALSE;
|
---|
911 | }
|
---|
912 | }
|
---|
913 | }
|
---|
914 | }
|
---|
915 | }
|
---|
916 | break;
|
---|
917 | };
|
---|
918 | case 2:{
|
---|
919 |
|
---|
920 | // It looks for trigger_multi closed pack neighbours
|
---|
921 | // above threshold
|
---|
922 | // Closed pack means that you can take out any pixel
|
---|
923 | // and you will still get a trigger for trigger_multi -1
|
---|
924 |
|
---|
925 | Int_t closed_pack = 1;
|
---|
926 |
|
---|
927 | for (int j=0;j<TRIGGER_PIXELS;j++){
|
---|
928 | if(Muster[j]){
|
---|
929 | // It checks if there are trigger_multi
|
---|
930 | // neighbours above threshold
|
---|
931 | Neighb[j] = kTRUE ;
|
---|
932 | for (iMulti=1;iMulti<trigger_multi; iMulti++){
|
---|
933 | if (!PassNextNeighbour(Muster, &Neighb[0]))
|
---|
934 | break;
|
---|
935 | }
|
---|
936 | if (iMulti==trigger_multi ) {
|
---|
937 | //
|
---|
938 | // A NN-Trigger is detected at time Slice
|
---|
939 | //
|
---|
940 |
|
---|
941 | // Check if there is closed pack topology
|
---|
942 | Bool_t Aux1[TRIGGER_PIXELS];
|
---|
943 | Bool_t Aux2[TRIGGER_PIXELS];
|
---|
944 | for (int jj=0;jj<TRIGGER_PIXELS;jj++)
|
---|
945 | Aux2[jj]=kFALSE;
|
---|
946 |
|
---|
947 | for (int i=0;i<TRIGGER_PIXELS;i++){
|
---|
948 | if (Neighb[i]) {
|
---|
949 | // Loop over pixels that achive neighbouring condition
|
---|
950 |
|
---|
951 | // huschel
|
---|
952 | // here also some corrections were neccessary
|
---|
953 | //
|
---|
954 | //Aux1=Neighb;
|
---|
955 |
|
---|
956 | for (int jj=0;jj<TRIGGER_PIXELS;jj++) {
|
---|
957 | Aux1[jj] = Neighb[jj] ; // huschel
|
---|
958 |
|
---|
959 | Aux2[jj]=kFALSE;
|
---|
960 | }
|
---|
961 |
|
---|
962 | Aux1[i]=kFALSE;
|
---|
963 | Aux2[j]=kTRUE;
|
---|
964 | // It checks if taking any of the pixels we lose
|
---|
965 | // neighbouring condition for trigger -1
|
---|
966 | for (iMulti=1;iMulti<(trigger_multi-1);iMulti++){
|
---|
967 | if (!PassNextNeighbour(Aux1, &Aux2[0]))
|
---|
968 | break;
|
---|
969 | }
|
---|
970 | if (iMulti<(trigger_multi-1)){
|
---|
971 | closed_pack=0;
|
---|
972 | break;
|
---|
973 | }
|
---|
974 |
|
---|
975 | }
|
---|
976 | }
|
---|
977 | if (closed_pack){
|
---|
978 | SlicesFirst[nFirst++] = iSli ; // We save time when it triggers
|
---|
979 | iReturn++ ;
|
---|
980 | iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
|
---|
981 | break ;
|
---|
982 | }
|
---|
983 | else {
|
---|
984 | for (int k=0; k<TRIGGER_PIXELS; k++){
|
---|
985 | if (Neighb[k]){
|
---|
986 | Neighb[k]=kFALSE;
|
---|
987 | }
|
---|
988 | }
|
---|
989 | }
|
---|
990 | }
|
---|
991 | else
|
---|
992 | for (int k=0; k<TRIGGER_PIXELS; k++)
|
---|
993 | Neighb[k]=kFALSE;
|
---|
994 | }
|
---|
995 | }
|
---|
996 | break;
|
---|
997 | };
|
---|
998 | default:{
|
---|
999 | cout << "This topology is not implemented yet"<<endl;
|
---|
1000 | break;
|
---|
1001 | }
|
---|
1002 | }
|
---|
1003 | }
|
---|
1004 | } // end of loop over the slices
|
---|
1005 | } // end of conditional for a trigger Zero
|
---|
1006 |
|
---|
1007 | //
|
---|
1008 | // return the Number of FirstLevel Triggers
|
---|
1009 | //
|
---|
1010 | return iReturn ;
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 |
|
---|
1014 | Bool_t MTrigger::PassNextNeighbour ( Bool_t m[], Bool_t *n) {
|
---|
1015 | //
|
---|
1016 | // This function is looking for a next neighbour of pixels in n[]
|
---|
1017 | // above triggers using a NNlookup table.
|
---|
1018 | // This table is builded by the default constructor
|
---|
1019 | //
|
---|
1020 |
|
---|
1021 | //
|
---|
1022 | // loop over all trigger pixels
|
---|
1023 | //
|
---|
1024 |
|
---|
1025 | Bool_t return_val = kFALSE;
|
---|
1026 |
|
---|
1027 | for ( Int_t i=0; i<TRIGGER_PIXELS; i++) {
|
---|
1028 | //
|
---|
1029 | // check if this pixel has a diskrminator signal
|
---|
1030 | // (this is inside n[] )
|
---|
1031 | //
|
---|
1032 |
|
---|
1033 | if ( n[i] && !return_val) {
|
---|
1034 |
|
---|
1035 | //
|
---|
1036 | // look in the next neighbours from the lookuptable
|
---|
1037 | //
|
---|
1038 |
|
---|
1039 | for ( Int_t kk=0; kk<6; kk++ ) {
|
---|
1040 | //
|
---|
1041 | // if the nextneighbour is outside the triggerarea do nothing
|
---|
1042 | //
|
---|
1043 | if (!return_val){
|
---|
1044 | if (NN[i][kk] >= TRIGGER_PIXELS ) {
|
---|
1045 |
|
---|
1046 | }
|
---|
1047 | // the nextneighbour is not inside the TRIGGER_PIXELS
|
---|
1048 | else {
|
---|
1049 | //
|
---|
1050 | // look if the boolean of nn pixels is true
|
---|
1051 | //
|
---|
1052 |
|
---|
1053 | if ( m[ NN[i][kk] ] && !n[NN[i][kk]] ) {
|
---|
1054 | n[NN[i][kk]]=kTRUE ;
|
---|
1055 | return_val =kTRUE;
|
---|
1056 | }
|
---|
1057 | }
|
---|
1058 | }
|
---|
1059 | else break;
|
---|
1060 | }
|
---|
1061 | }
|
---|
1062 | }
|
---|
1063 | return(return_val);
|
---|
1064 | }
|
---|