source: trunk/MagicSoft/Simulation/Detector/include-MTrigger/MTrigger.cxx@ 725

Last change on this file since 725 was 675, checked in by blanch, 24 years ago
Member function SetNSB has been renamed to AddNSB and noe it adds the NSB contribution instead of setting it.
File size: 36.5 KB
Line 
1/////////////////////////////////////////////////////////////////
2//
3// MTrigger
4//
5//
6#include "MTrigger.hxx"
7
8#include "TROOT.h"
9#include "TFile.h"
10#include "TH1.h"
11#include "TObjArray.h"
12#include "MGTriggerSignal.hxx"
13
14
15MTrigger::MTrigger() {
16 // ============================================================
17 //
18 // default constructor
19 //
20 // The procedure is the following:
21 //
22 // 1. Allocation of some memory needed
23 // 2. some parameters of the trigger are set to default.
24 // 3. if a File MTrigger.card exists in the current directory,
25 // this parameters of the trigger may be changed
26 // 4. Then the all signals are set to zero
27
28 FILE *unit_mtrig ;
29 Int_t endflag = 1 ;
30 Int_t bthresholdpixel = FALSE;
31 char datac[256] ;
32 char dummy[50] ;
33 char input_thres[50];
34 Int_t i, ii ;
35
36 Float_t threshold ;
37
38 //
39 // allocate the memory for the 2dim arrays (a_sig, d_sig )
40 //
41
42 for( Int_t j=0; j<TRIGGER_PIXELS; j++ ) {
43
44 a_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
45
46 d_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
47 }
48
49 //
50 // set the values for the standard response pulse
51 //
52
53 fwhm_resp = RESPONSE_FWHM ;
54 ampl_resp = RESPONSE_AMPLITUDE ;
55
56 overlaping_time = TRIGGER_OVERLAPING;
57
58 threshold = CHANNEL_THRESHOLD ;
59
60
61 gate_leng = TRIGGER_GATE ;
62 trigger_multi = TRIGGER_MULTI ;
63 trigger_geometry = TRIGGER_GEOM ;
64
65 //
66 // check if the file MTrigger.card exists
67 //
68
69 if ( (unit_mtrig = fopen ("MTrigger.card", "r")) != 0 ) {
70 cout << "[MTrigger] use the values from MTrigger.card "<< endl ;
71
72 while ( endflag == 1 ) {
73 //
74 //
75 fgets (datac, 255, unit_mtrig) ;
76 // printf ("--> %s <--", datac ) ;
77
78 //
79 // now compare the line with controlcard words
80 //
81
82 if ( strncmp (datac, "channel_threshold", 17 ) == 0 ) {
83 sscanf (datac, "%s %f", dummy, &threshold ) ;
84 }
85 else if ( strncmp (datac, "gate_length", 11 ) == 0 ) {
86 sscanf (datac, "%s %f", dummy, &gate_leng ) ;
87 }
88 else if ( strncmp (datac, "response_fwhm", 13 ) == 0 ) {
89 sscanf (datac, "%s %f", dummy, &fwhm_resp ) ;
90 }
91 else if ( strncmp (datac, "response_ampl", 13 ) == 0 ) {
92 sscanf (datac, "%s %f", dummy, &ampl_resp ) ;
93 }
94 else if ( strncmp (datac, "overlaping", 10 ) == 0 ) {
95 sscanf (datac, "%s %f", dummy, &overlaping_time ) ;
96 }
97 else if ( strncmp (datac, "multiplicity", 12 ) == 0 ) {
98 sscanf (datac, "%s %f", dummy, &trigger_multi ) ;
99 }
100 else if ( strncmp (datac, "topology", 8 ) == 0 ) {
101 sscanf (datac, "%s %i", dummy, &trigger_geometry ) ;
102 }
103 else if ( strncmp (datac, "threshold_file", 14 ) == 0 ) {
104 sscanf (datac, "%s %s", dummy, input_thres ) ;
105 bthresholdpixel=TRUE;
106 }
107
108 if ( feof(unit_mtrig) != 0 ) {
109 endflag = 0 ;
110 }
111
112 }
113
114 fclose ( unit_mtrig ) ;
115 }
116 else {
117 cout << "[MTrigger] use the standard values for MTrigger "<< endl ;
118 }
119
120 cout << endl
121 << "[MTrigger] Setting up the MTrigger with this values "<< endl ;
122 if(bthresholdpixel){
123 cout<<endl
124 << "[MTrigger] ChannelThreshold from file: "<<input_thres
125 <<endl;
126 }
127 else{
128 cout << endl
129 << "[MTrigger] ChannelThreshold: " << threshold << " mV"
130 << endl ;
131 }
132 cout << "[MTrigger] Gate Length: " << gate_leng << " ns"
133 << endl ;
134 cout << "[MTrigger] Overlaping time: " << overlaping_time << " ns"
135 << endl ;
136 cout << "[MTrigger] Response FWHM: " << fwhm_resp << " ns"
137 << endl ;
138 cout << "[MTrigger] Response Amplitude: " << ampl_resp << " mV"
139 << endl ;
140 cout << "[MTrigger] Trigger Multiplicity: " << trigger_multi << " pixels"
141 << endl ;
142 cout << "[MTrigger] Trigger Topology: " << trigger_geometry
143 << endl ;
144
145 cout << endl ;
146
147
148 //
149 // we have introduced individual thresholds for all pixels
150 //
151 FILE *unit_thres;
152
153 if (bthresholdpixel == TRUE) {
154 if ((unit_thres=fopen(input_thres, "r"))==0){
155 cout<<"WARNING: not able to read ..."<<input_thres<<endl;
156 cout<<"Threshold will be set to "<<threshold<<" for all pixels"<<endl;
157 for (Int_t k=0; k<TRIGGER_PIXELS; k++ ) {
158 chan_thres[k] = threshold ;
159 }
160 }
161 else {
162 for (i=0;i<TRIGGER_PIXELS;i++){
163 fscanf(unit_thres, "%f",&chan_thres[i]);
164 }
165 fclose (unit_thres);
166 }
167 }
168 else {
169 for (Int_t k=0; k<TRIGGER_PIXELS; k++ ) {
170 chan_thres[k] = threshold ;
171 }
172 }
173
174
175 //
176 // set up the response shape
177 //
178
179 Float_t sigma ;
180 Float_t x, x0 ;
181
182 sigma = fwhm_resp / 2.35 ;
183 x0 = 3*sigma ;
184
185 for (i=0; i< RESPONSE_SLICES ; i++ ) {
186
187 x = i * (1./((Float_t)SLICES_PER_NSEC))
188 + (1./( 2 * (Float_t)SLICES_PER_NSEC )) ;
189
190 sing_resp[i] =
191 ampl_resp * expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ;
192
193 }
194
195 //
196 // look for the time between start of response function and the
197 // maximum value of the response function. This is needed by the
198 // member functions FillNSB() and FillStar()
199 //
200
201 Int_t imax = 0 ;
202 Float_t max = 0. ;
203 for (i=0; i< RESPONSE_SLICES ; i++ ) {
204 if ( sing_resp[i] > max ) {
205 imax = i ;
206 max = sing_resp[i] ;
207 }
208 }
209
210 peak_time = ( (Float_t) imax ) / ( (Float_t) SLICES_PER_NSEC ) ;
211
212
213 //
214 // the amplitude of one single photo electron is not a constant.
215 // There exists a measured distribution from Razmik. This distribution
216 // is used to simulate the noise of the amplitude.
217 // For this a histogramm (histPmt) is created and filled with the
218 // values.
219 //
220
221 histPmt = new TH1F ("histPmt","Noise of PMT", 40, 0., 40.) ;
222
223 Stat_t ValRazmik[41] = { 0., 2.14, 2.06, 2.05, 2.05, 2.06, 2.07, 2.08, 2.15,
224 2.27, 2.40, 2.48, 2.55, 2.50, 2.35, 2.20, 2.10,
225 1.90, 1.65, 1.40, 1.25, 1.00, 0.80, 0.65, 0.50,
226 0.35, 0.27, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10,
227 0.08, 0.06, 0.04, 0.02, 0.01, 0.005,0.003, 0.001} ;
228
229 histMean = histPmt->GetMean() ;
230
231 for (i=0;i<41;i++){
232 histPmt->SetBinContent(i,ValRazmik[i]);
233 }
234
235 histMean = histPmt->GetMean() ;
236
237 //
238 // create the random generator for the Electronic Noise
239 //
240
241 GenElec = new TRandom() ;
242
243 //
244 // Read in the lookup table for NN trigger
245 //
246
247 FILE *unit ;
248 int id ;
249
250 i = 0 ;
251
252 if ( (unit = fopen("../include-MTrigger/TABLE_NEXT_NEIGHBOUR", "r" )) == 0 ) {
253 cout << "ERROR: not able to read ../include-MTrigger/TABLE_NEXT_NEIGHBOUR"
254 << endl ;
255 exit(123) ;
256 }
257 else {
258 while ( i < TRIGGER_PIXELS )
259 {
260 fscanf ( unit, " %d", &id ) ;
261
262 for ( Int_t k=0; k<6; k++ ) {
263 fscanf ( unit, "%d ", &NN[i][k] ) ;
264 }
265 i++ ;
266 }
267
268 fclose (unit) ;
269 }
270
271
272 //
273 // Read in the lookup table for trigger cells
274 //
275
276 i = 0 ;
277
278 if ( (unit = fopen("../include-MTrigger/TABLE_PIXELS_IN_CELLS", "r" )) == 0 ) {
279 cout << "ERROR: not able to read ../include-MTrigger/TABLE_PIXELS_IN_CELLS"
280 << endl ;
281 exit(123) ;
282 }
283 else {
284 while ( i < TRIGGER_PIXELS )
285 {
286 for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
287 TC[k][i]=FALSE;
288 }
289 i++ ;
290 }
291 while ( feof(unit) == 0 ) {
292 for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
293 fscanf ( unit, "%d ", &i ) ;
294 if ((i-1)<TRIGGER_PIXELS)
295 TC[k][i-1]=TRUE;
296 }
297 }
298 fclose (unit) ;
299 }
300
301
302 //
303 //
304 // set all the booleans used to FALSE, indicating that the pixel is not
305 // used in this event.
306 //
307
308 for ( i =0 ; i <TRIGGER_PIXELS ; i++ ) {
309 used [i] = FALSE ;
310 dknt [i] = FALSE ;
311
312 nphotshow[i] = 0 ;
313 nphotnsb [i] = 0 ;
314 nphotstar[i] = 0 ;
315
316 baseline[i] = 0 ;
317 }
318
319 for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
320 sum_d_sig[ii] = 0. ;
321 }
322
323 //
324 // set the information about the Different Level Triggers to zero
325 //
326
327 nZero = nFirst = nSecond = 0 ;
328
329 for (ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
330 SlicesZero[ii] = FALSE;
331 }
332
333 for ( i = 0 ; i < 5 ; i++) {
334 SlicesFirst[i] = -50 ;
335 SlicesSecond[i] = -50 ;
336 PixelsFirst[i] = -1;
337 PixelsSecond[i] = -1;
338 }
339 cout << " end of MTrigger::MTrigger()" << endl ;
340}
341
342MTrigger::MTrigger(float gate, float overt, float ampl, float fwhm) {
343 // ============================================================
344 //
345 // constructor
346 //
347 // The procedure is the following:
348 //
349 // 1. Allocation of some memory needed
350 // 2. some parameters of the trigger are set.
351 // 3. Then the all signals are set to zero
352
353 Int_t i, ii ;
354
355 Float_t threshold ;
356
357 //
358 // allocate the memory for the 2dim arrays (a_sig, d_sig )
359 //
360
361 for( Int_t j=0; j<TRIGGER_PIXELS; j++ ) {
362
363 a_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
364
365 d_sig[j] = new Float_t[TRIGGER_TIME_SLICES] ;
366 }
367
368 //
369 // set the values for the standard response pulse
370 //
371
372 fwhm_resp = fwhm ;
373 ampl_resp = ampl ;
374
375 overlaping_time = overt;
376
377
378 threshold = CHANNEL_THRESHOLD ;
379
380
381 gate_leng = gate ;
382 trigger_multi = TRIGGER_MULTI ;
383 trigger_geometry = TRIGGER_GEOM ;
384
385 cout << endl
386 << "[MTrigger] Setting up the MTrigger with this values "<< endl ;
387 cout << "[MTrigger] Gate Length: " << gate_leng << " ns"
388 << endl ;
389 cout << "[MTrigger] Overlaping time: " << overlaping_time << " ns"
390 << endl ;
391 cout << "[MTrigger] Response FWHM: " << fwhm_resp << " ns"
392 << endl ;
393 cout << "[MTrigger] Response Amplitude: " << ampl_resp << " mV"
394 << endl ;
395 cout << endl ;
396
397
398 for (Int_t k=0; k<TRIGGER_PIXELS; k++ ) {
399 chan_thres[k] = threshold ;
400 }
401
402
403 //
404 // set up the response shape
405 //
406
407 Float_t sigma ;
408 Float_t x, x0 ;
409
410 sigma = fwhm_resp / 2.35 ;
411 x0 = 3*sigma ;
412
413 for (i=0; i< RESPONSE_SLICES ; i++ ) {
414
415 x = i * (1./((Float_t)SLICES_PER_NSEC))
416 + (1./( 2 * (Float_t)SLICES_PER_NSEC )) ;
417
418 sing_resp[i] =
419 ampl_resp * expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ;
420
421 }
422
423 //
424 // look for the time between start of response function and the
425 // maximum value of the response function. This is needed by the
426 // member functions FillNSB() and FillStar()
427 //
428
429 Int_t imax = 0 ;
430 Float_t max = 0. ;
431 for (i=0; i< RESPONSE_SLICES ; i++ ) {
432 if ( sing_resp[i] > max ) {
433 imax = i ;
434 max = sing_resp[i] ;
435 }
436 }
437
438 peak_time = ( (Float_t) imax ) / ( (Float_t) SLICES_PER_NSEC ) ;
439
440
441 //
442 // the amplitude of one single photo electron is not a constant.
443 // There exists a measured distribution from Razmik. This distribution
444 // is used to simulate the noise of the amplitude.
445 // For this a histogramm (histPmt) is created and filled with the
446 // values.
447 //
448
449 histPmt = new TH1F ("histPmt","Noise of PMT", 40, 0., 40.) ;
450
451 Stat_t ValRazmik[41] = { 0., 2.14, 2.06, 2.05, 2.05, 2.06, 2.07, 2.08, 2.15,
452 2.27, 2.40, 2.48, 2.55, 2.50, 2.35, 2.20, 2.10,
453 1.90, 1.65, 1.40, 1.25, 1.00, 0.80, 0.65, 0.50,
454 0.35, 0.27, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10,
455 0.08, 0.06, 0.04, 0.02, 0.01, 0.005,0.003, 0.001} ;
456
457 histMean = histPmt->GetMean() ;
458
459 for (i=0;i<41;i++){
460 histPmt->SetBinContent(i,ValRazmik[i]);
461 }
462
463 histMean = histPmt->GetMean() ;
464
465 //
466 // create the random generator for the Electronic Noise
467 //
468
469 GenElec = new TRandom() ;
470
471 //
472 // Read in the lookup table for NN trigger
473 //
474
475 FILE *unit ;
476 int id ;
477
478 i = 0 ;
479
480 if ( (unit = fopen("../include-MTrigger/TABLE_NEXT_NEIGHBOUR", "r" )) == 0 ) {
481 cout << "ERROR: not able to read ../include-MTrigger/TABLE_NEXT_NEIGHBOUR"
482 << endl ;
483 exit(123) ;
484 }
485 else {
486 while ( i < TRIGGER_PIXELS )
487 {
488 fscanf ( unit, " %d", &id ) ;
489
490 for ( Int_t k=0; k<6; k++ ) {
491 fscanf ( unit, "%d ", &NN[i][k] ) ;
492 }
493 i++ ;
494 }
495
496 fclose (unit) ;
497 }
498
499
500 //
501 // Read in the lookup table for trigger cells
502 //
503
504 i = 0 ;
505
506 if ( (unit = fopen("../include-MTrigger/TABLE_PIXELS_IN_CELLS", "r" )) == 0 ) {
507 cout << "ERROR: not able to read ../include-MTrigger/TABLE_PIXELS_IN_CELLS"
508 << endl ;
509 exit(123) ;
510 }
511 else {
512 while ( i < TRIGGER_PIXELS )
513 {
514 for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
515 TC[k][i]=FALSE;
516 }
517 i++ ;
518 }
519 while ( feof(unit) == 0 ) {
520 for ( Int_t k=0; k<TRIGGER_CELLS; k++ ) {
521 fscanf ( unit, "%d ", &i ) ;
522 if((i-1)<TRIGGER_PIXELS)
523 TC[k][i-1]=TRUE;
524 }
525 }
526 fclose (unit) ;
527 }
528
529
530 //
531 //
532 // set all the booleans used to FALSE, indicating that the pixel is not
533 // used in this event.
534 //
535
536 for ( i =0 ; i <TRIGGER_PIXELS ; i++ ) {
537 used [i] = FALSE ;
538 dknt [i] = FALSE ;
539
540 nphotshow[i] = 0 ;
541 nphotnsb [i] = 0 ;
542 nphotstar[i] = 0 ;
543
544 baseline[i] = 0 ;
545 }
546
547 for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
548 sum_d_sig[ii] = 0. ;
549 }
550
551 //
552 // set the information about the Different Level Triggers to zero
553 //
554
555 nZero = nFirst = nSecond = 0 ;
556
557 for (ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
558 SlicesZero[ii] = FALSE;
559 }
560
561 for ( i = 0 ; i < 5 ; i++) {
562 SlicesFirst[i] = -50 ;
563 SlicesSecond[i] = -50 ;
564 PixelsFirst[i] = -1;
565 PixelsSecond[i] = -1;
566 }
567 cout << " end of MTrigger::MTrigger()" << endl ;
568}
569
570MTrigger::~MTrigger() {
571 // ============================================================//
572 // destructor
573 //
574 int i;
575
576 delete histPmt ;
577
578 for(i=0;i<TRIGGER_PIXELS;i++){
579 //delete [] a_sig[i];
580 //delete [] d_sig[i];
581 }
582
583 delete GenElec;
584}
585
586
587void MTrigger::Reset() {
588 // ============================================================
589 //
590 // reset all values of the signals to zero
591 //
592 Int_t i, ii ;
593
594 for ( i =0 ; i <TRIGGER_PIXELS ; i++ ) {
595 used [i] = FALSE ;
596 dknt [i] = FALSE ;
597
598 nphotshow[i] = 0 ;
599 nphotnsb [i] = 0 ;
600 nphotstar[i] = 0 ;
601 }
602
603 for ( ii=0 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
604 sum_d_sig[ii] = 0. ;
605 }
606}
607
608void MTrigger::ClearZero() {
609 //
610 // set the information about the Zero Level Trigger to zero
611 //
612
613 Int_t i;
614
615 nZero = 0 ;
616
617 for (i=0 ; i<TRIGGER_TIME_SLICES; i++ ) {
618 SlicesZero[i] = FALSE;
619 }
620
621}
622
623void MTrigger::ClearFirst() {
624 //
625 // set the information about the First Level Trigger to zero
626 //
627
628 Int_t i;
629
630 nFirst = 0 ;
631
632 for ( i = 0 ; i < 5 ; i++) {
633 SlicesFirst[i] = -50 ;
634 PixelsFirst[i] = -1;
635 }
636}
637
638Float_t MTrigger::FillShow(Int_t iPix, Float_t time) {
639 // ============================================================
640 //
641 // Fills the information of one single Phe electron that
642 // comes from the shower
643 //
644
645 //
646 // First check the time
647 //
648
649 if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
650 cout << " WARNING: time of phe out of time range: " << time << endl;
651 return 0. ;
652 }
653 else {
654 return ( Fill( iPix, time, CASE_SHOW ) ) ;
655 }
656}
657
658Float_t MTrigger::FillNSB(Int_t iPix, Float_t time) {
659 // ============================================================
660 //
661 // Fills the information of one single Phe electron that
662 // comes from the shower
663 //
664
665 //
666 // First check the time
667 //
668
669 if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
670 cout << " WARNING: time of phe out of time range: " << time << endl;
671 return 0. ;
672 }
673 else {
674 return ( Fill( iPix, time - peak_time, CASE_NSB ) ) ;
675 }
676}
677
678Float_t MTrigger::FillStar(Int_t iPix, Float_t time) {
679 // ============================================================
680 //
681 // Fills the information of one single Phe electron that
682 // comes from the shower
683 //
684
685 //
686 // First check the time
687 //
688
689 if ( time < 0. || time > TOTAL_TRIGGER_TIME ) {
690 cout << " WARNING: time of phe out of time range: " << time << endl;
691 return 0. ;
692 }
693 else {
694 return ( Fill( iPix, time - peak_time, CASE_STAR ) ) ;
695 }
696}
697
698Float_t MTrigger::Fill( Int_t iPix, Float_t time, Int_t fall ) {
699 // ============================================================
700 //
701 // Fills the information in the array for the analog signal
702 //
703
704 Float_t PmtAmp = 0 ; // Amplitude of the PMT signal (results from noise)
705
706 if ( iPix < 0 ) {
707 cout << " ERROR: in MTrigger::Fill() " << endl ;
708 cout << " ERROR: Pixel Id < 0 ---> Exit " << endl ;
709 exit (1) ;
710 }
711 else if ( iPix >= CAMERA_PIXELS ) {
712 cout << " ERROR: in MTrigger::Fill() " << endl ;
713 cout << " ERROR: Pixel Id > CAMERA_PIXELS ---> Exit " << endl ;
714 exit (1) ;
715 }
716 else if ( iPix >= TRIGGER_PIXELS ) {
717 //
718 // We have not to fill information in the trigger part,
719 // but we must create the height of the puls going into
720 // the FADC simulation
721 //
722 PmtAmp = (histPmt->GetRandom()/histMean) ;
723
724 //
725 // But we fill the information in the counters of phe's
726 //
727
728 if ( fall == CASE_SHOW )
729 nphotshow[iPix]++ ;
730 else if ( fall == CASE_NSB )
731 nphotshow[iPix]++ ;
732 else if ( fall == CASE_STAR )
733 nphotstar[iPix]++ ;
734
735
736 }
737 else {
738 //
739 // we have a trigger pixel and we fill it
740 //
741 Int_t i ;
742
743 //
744 // but at the beginning we must check if this pixel is
745 // hitted the first time
746 //
747
748 if ( used[iPix] == FALSE ) {
749 used [iPix] = TRUE ;
750 // baseline[iPix] = 0. ;
751
752 for (i=0; i < TRIGGER_TIME_SLICES; i++ ) {
753 a_sig[iPix][i] = 0. ;
754 d_sig[iPix][i] = 0. ;
755 }
756 }
757
758 //
759 // get the randomized amplitude
760 //
761 PmtAmp = (histPmt->GetRandom()/histMean) ;
762
763 //
764 // select the first slice to fill
765 //
766
767 Int_t ichan = (Int_t) ( time * ((Float_t) SLICES_PER_NSEC) ) ;
768
769 //
770 // look over the response signal and put it in the signal line
771 //
772
773 for ( i = 0 ; i<RESPONSE_SLICES; i++ ) {
774
775 if ( (ichan+i) >= 0 &&
776 (ichan+i) < TRIGGER_TIME_SLICES ) {
777 a_sig[iPix][ichan+i] += PmtAmp * sing_resp[i] ;
778 }
779 }
780
781 //
782 // we fill the information in the counters of phe's
783 //
784
785 if ( fall == CASE_SHOW )
786 nphotshow[iPix]++ ;
787 else if ( fall == CASE_NSB )
788 nphotshow[iPix]++ ;
789 else if ( fall == CASE_STAR )
790 nphotstar[iPix]++ ;
791
792 //
793 //
794 return PmtAmp ;
795 }
796 return PmtAmp ;
797}
798
799
800void MTrigger::AddNSB( Int_t iPix, Float_t resp[TRIGGER_TIME_SLICES]){
801 // ================================================================
802 //
803 // Sets the information in the array for the analog signal
804 // from a given array
805 //
806
807 if ( iPix < 0 ) {
808 cout << " ERROR: in MTrigger::SetNSB() " << endl ;
809 cout << " ERROR: Pixel Id < 0 ---> Exit " << endl ;
810 exit (1) ;
811 }
812 else if ( iPix >= CAMERA_PIXELS ) {
813 cout << " ERROR: in MTrigger::SetNSB() " << endl ;
814 cout << " ERROR: Pixel Id > CAMERA_PIXELS ---> Exit " << endl ;
815 exit (1) ;
816 }
817 else if ( iPix >= TRIGGER_PIXELS ) {
818 //
819 // We have not to fill information in the trigger part.
820 //
821 }
822 else {
823 //
824 // we have a trigger pixel and we fill it
825 //
826 Int_t i ;
827
828 //
829 // but at the beginning we must check if this pixel is
830 // hitted the first time
831 //
832
833 if ( used[iPix] == FALSE ) {
834 used [iPix] = TRUE ;
835
836 for (i=0; i < TRIGGER_TIME_SLICES; i++ ) {
837 a_sig[iPix][i] = 0. ;
838 d_sig[iPix][i] = 0. ;
839 }
840 }
841
842 //
843 // look over the response signal and put it in the signal line
844 //
845
846 for ( i = 0 ; i<TRIGGER_TIME_SLICES; i++ ) {
847
848 a_sig[iPix][i] += resp[i];
849 }
850
851 }
852}
853
854void MTrigger::ElecNoise() {
855 // ============================================================
856 //
857 // adds the noise due to optronic and electronic
858 // to the signal
859 //
860 Float_t rausch ;
861
862 rausch = RESPONSE_AMPLITUDE * 0.3 ;
863
864 for ( Int_t i=0 ; i < TRIGGER_PIXELS; i++ ) {
865 if ( used [i] == TRUE ) {
866
867 for ( Int_t ii=1 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
868
869 a_sig [i][ii] += GenElec->Gaus(0., rausch ) ;
870
871 }
872 }
873 }
874}
875
876void MTrigger::SetMultiplicity(Int_t multi){
877 //=============================================================
878 //
879 // It sets the private member trigger_multi
880
881 trigger_multi=multi;
882}
883
884void MTrigger::SetTopology(Int_t topo){
885 //=============================================================
886 //
887 // It sets the private member trigger_geometry
888
889 trigger_geometry=topo;
890}
891
892void MTrigger::SetThreshold(Float_t thres[]){
893 //=============================================================
894 //
895 // It sets the private member chan_thres[TRIGGER_PIXELS]
896
897 Int_t i;
898
899 for(i=0;i<TRIGGER_PIXELS;i++){
900 chan_thres[i]=thres[i];
901 }
902}
903
904void MTrigger::ReadThreshold(char name[]){
905 //=============================================================
906 //
907 // It reads values for threshold of each pixel from file name
908
909 FILE *unit;
910 Int_t i=0;
911
912 if ((unit=fopen(name, "r"))==0){
913 cout<<"WARNING: not able to read ..."<<name<<endl;
914 }
915 else {
916 while (i<TRIGGER_PIXELS){
917 fscanf(unit, "%f",&chan_thres[i++]);
918 }
919 fclose (unit);
920 }
921
922}
923
924void MTrigger::GetResponse(Float_t *resp) {
925 // ============================================================
926 //
927 // puts the standard response function into the array resp
928
929 for ( Int_t i=0; i< RESPONSE_SLICES; i++ ) {
930
931 resp[i] = sing_resp[i] ;
932 }
933
934}
935
936void MTrigger::GetMapDiskriminator(Byte_t *map){
937 //=============================================================
938 //
939 // Gives a map of the fired pixels (Bool_t dknt [TRIGGER_PIXELS])
940 // in an array of Byte_t (each byte has the information for 8 pixels)
941 //
942
943 Int_t i,ii;
944
945 for(i=0;i<TRIGGER_PIXELS/8+1;i++){
946 map[i]=0;
947 }
948
949 for(i=0;i<TRIGGER_PIXELS;i++){
950 ii=(Int_t)i/8;
951 if (dknt[i]==TRUE){
952 map[ii]=map[ii]+(Int_t)pow(2,i-ii*8);
953 }
954 }
955}
956
957
958void MTrigger::Diskriminate() {
959 // ============================================================
960 //
961 // Diskriminates the analog signal
962 //
963 // one very important part is the calucaltion of the baseline
964 // shift. Because of the AC coupling of the PMT, only the
965 // fluctuations are interesting. If there are a lot of phe,
966 // a so-called shift of the baseline occurs.
967 //
968
969 Int_t iM = 0 ;
970 Int_t i, ii ;
971
972
973 Int_t jmax = (Int_t) (gate_leng * SLICES_PER_NSEC ) ;
974
975 //
976 // first of all determine the integral of all signals to get
977 // the baseline shift.
978 //
979
980 for ( i=0 ; i < TRIGGER_PIXELS ; i++ ) {
981 if ( used[i] == TRUE ) {
982 baseline[i] = 0. ;
983
984 for ( ii = 0 ; ii < TRIGGER_TIME_SLICES ; ii++ ) {
985 baseline[i] += a_sig[i][ii] ;
986 }
987
988 baseline[i] = baseline[i] / ( (Float_t ) TRIGGER_TIME_SLICES) ;
989
990 //
991 // now correct the baseline shift in the analog signal!!
992 //
993 for ( ii = 0 ; ii < TRIGGER_TIME_SLICES ; ii++ ) {
994 a_sig[i][ii] = a_sig[i][ii] - baseline[i] ;
995 }
996 }
997 }
998
999 //
1000 // now the diskrimination is coming
1001 //
1002 // take only that pixel which are used
1003 //
1004
1005 for ( i=0 ; i < TRIGGER_PIXELS; i++ ) {
1006 if ( used [i] == TRUE ) {
1007
1008 for ( ii=1 ; ii<TRIGGER_TIME_SLICES; ii++ ) {
1009 //
1010 // first check if the signal is crossing the CHANNEL_THRESHOLD
1011 // form low to big signals
1012 //
1013
1014 if ( a_sig[i][ii-1] < chan_thres[i] &&
1015 a_sig[i][ii] >= chan_thres[i] ) {
1016 {
1017 if ( dknt[i] == FALSE ) {
1018 dknt [i] = TRUE ;
1019 iM++ ;
1020 }
1021 // cout << " disk " << ii ;
1022 //
1023 // put the standard diskriminator signal in
1024 // the diskriminated signal
1025 //
1026 for ( Int_t j=0 ; j < jmax ; j++ ) {
1027
1028 if ( ii+j < TRIGGER_TIME_SLICES ) {
1029 d_sig [i][ii+j] = 1. ;
1030 }
1031 }
1032 ii = ii + jmax ;
1033 }
1034 }
1035 else d_sig[i][ii]=0.;
1036 }
1037 }
1038 }
1039}
1040
1041
1042void MTrigger::ShowSignal (MMcEvt *McEvt) {
1043 // ============================================================
1044 //
1045 // This method is used to book the histogramm to show the signal in
1046 // a special gui frame (class MGTriggerSignal). After the look onto the
1047 // signals for a better understanding of the things we will expect
1048 // the gui frame and all histogramms will be destroyed.
1049 //
1050
1051 //
1052 // first of all create a list of the histograms to show
1053 //
1054 // take only that one with a entry
1055
1056 TH1F *hist ;
1057 TH1F *dhist ;
1058 Char_t dumm[10];
1059 Char_t name[256];
1060
1061 TObjArray *AList ;
1062 AList = new TObjArray(10) ;
1063
1064 TObjArray *DList ;
1065 DList = new TObjArray(10) ;
1066
1067 // the list of analog signal histograms
1068 // at the beginning we initalise 10 elements
1069 // but this array expand automaticly if neccessay
1070
1071 Int_t ic = 0 ;
1072 for ( Int_t i=0 ; i < TRIGGER_PIXELS; i++ ) {
1073 if ( used [i] == TRUE ) {
1074
1075 sprintf (dumm, "A_%d", i ) ;
1076 sprintf (name, "analog %d", i ) ;
1077
1078 hist = new TH1F(dumm, name, TRIGGER_TIME_SLICES, 0., TOTAL_TRIGGER_TIME);
1079 //
1080 // fill the histogram
1081 //
1082
1083 for (Int_t ibin=1; ibin <=TRIGGER_TIME_SLICES; ibin++) {
1084 hist->SetBinContent (ibin, a_sig[i][ibin-1]) ;
1085 }
1086 hist->SetMaximum(8.);
1087 hist->SetMinimum(-8.);
1088 hist->SetStats(kFALSE);
1089
1090 AList->Add(hist) ;
1091
1092 sprintf (dumm, "D_%d", i ) ;
1093 sprintf (name, "digital %d", i ) ;
1094
1095 dhist = new TH1F(dumm, name, TRIGGER_TIME_SLICES, 0., TOTAL_TRIGGER_TIME);
1096 if ( dknt[i] == TRUE ) {
1097 //
1098 // fill the histogram of digital signal
1099 //
1100 for (Int_t ibin=1; ibin <=TRIGGER_TIME_SLICES; ibin++) {
1101 dhist->SetBinContent (ibin, d_sig[i][ibin-1]) ;
1102 dhist->SetStats(kFALSE);
1103 }
1104 }
1105 dhist->SetMaximum(1.5);
1106
1107 DList->Add(dhist);
1108
1109 ic++ ;
1110
1111 }
1112 }
1113
1114 //
1115 // create the Gui Tool
1116 //
1117 //
1118
1119 new MGTriggerSignal(McEvt,
1120 AList,
1121 DList,
1122 gClient->GetRoot(),
1123 gClient->GetRoot(),
1124 400, 400 ) ;
1125
1126 //
1127 // delete the List of histogramms
1128 //
1129
1130 AList->Delete() ;
1131 DList->Delete() ;
1132
1133 delete AList ;
1134 delete DList ;
1135}
1136
1137
1138Int_t MTrigger::ZeroLevel() {
1139 // ============================================================
1140 //
1141 // This is a level introduced just to speed up the program.
1142 // It makes sense to look for next neighbours only if there
1143 // are at least trigger_multi pixels with a diskriminator
1144 // signal.
1145 //
1146
1147 //
1148 // first count the pixels with a diskriminator signal
1149 //
1150 Int_t iMul = 0 ;
1151 for ( Int_t iP =0 ; iP < TRIGGER_PIXELS; iP++ ) {
1152 //
1153 //
1154 if ( dknt[iP] == TRUE ) {
1155 iMul++ ;
1156 }
1157 }
1158
1159 //
1160 // only if there are at least more pixels than requested
1161 // it make sense to look into details
1162 if ( iMul >= trigger_multi ) {
1163 //
1164 // fill the sum signal of all diskriminator signals
1165 //
1166 for ( Int_t iP =0 ; iP < TRIGGER_PIXELS; iP++ ) {
1167 //
1168 //
1169 if ( dknt[iP] == TRUE ) {
1170 //
1171 // sum it up
1172 //
1173 for (Int_t iS=0; iS< TRIGGER_TIME_SLICES; iS++ ) {
1174 //
1175 //
1176 sum_d_sig [iS] += d_sig[iP][iS] ;
1177 }
1178 }
1179 }
1180 //
1181 // run over the sum_d_sig and check each time slice
1182 //
1183 Int_t iReturn = 0 ;
1184
1185 for (Int_t iS=0; iS< TRIGGER_TIME_SLICES; iS++ ) {
1186
1187 if ( sum_d_sig[iS] >= trigger_multi ) {
1188 iReturn++ ;
1189 nZero++;
1190 SlicesZero[iS] = TRUE ;
1191
1192 }
1193 else SlicesZero[iS] = FALSE;
1194 }
1195
1196 return ( iReturn ) ;
1197 }
1198 else {
1199 return 0 ;
1200 }
1201}
1202
1203Int_t MTrigger::FirstLevel() {
1204 //=================================================
1205 //
1206 // This is a level trigger which can look for several
1207 // multiplicities (trigger_multi)
1208 // and topologies (trigger_geometry)
1209 //
1210
1211 Int_t iReturn = 0 ; // Return value for this function
1212
1213 // Definition of needed variables
1214 Bool_t Muster[TRIGGER_PIXELS] ;
1215 Bool_t Neighb[TRIGGER_PIXELS] ;
1216 Int_t iMulti = 0 ;
1217
1218 // We put several wrong topologies which we already know that they
1219 // are not possible. It can save time.
1220
1221 if (trigger_geometry==0 && trigger_multi>7) {
1222 cout <<"You are looking for a topology that needs more than six neighbours of the same pixel"<<endl;
1223 cout <<" Topology "<<trigger_geometry<<" Multiplicity "<<trigger_multi<<endl;;
1224 return (kFALSE);
1225 }
1226
1227 if (trigger_geometry==2 && trigger_multi<3) {
1228 cout<<"Closed pack geometry with multiplicity "<<trigger_multi<<" does not make sense"<<endl;
1229 return (kFALSE);
1230 }
1231 if (trigger_geometry>2) {
1232 cout << "This trigger topology is not implemented"<<endl;
1233 return (kFALSE);
1234 }
1235
1236 //
1237 // loop over all ZeroLevel Trigger
1238 //
1239 // it is only neccessary to look after a ZeroLevel Trigger for
1240 // a FirstLevel (NextNeighbour) trigger.
1241 //
1242
1243 if (nZero) {
1244
1245 //
1246 // Then run over all slices
1247 //
1248
1249 for ( Int_t iSli = 0;
1250 iSli < TRIGGER_TIME_SLICES; iSli++ ) {
1251
1252 // Check if this time slice has more fired pixels than trigger_multi
1253
1254 if (SlicesZero[iSli]){
1255 //
1256 // Loop over trigger cells. It is topology analisy,
1257 // therefore it is keep here after multiplicity and
1258 // threshold checks.
1259 //
1260
1261 for(Int_t iCell=0; iCell<TRIGGER_CELLS; iCell++){
1262 //
1263 // then look in all pixel of that cell if the
1264 // diskriminated signal is 1
1265 //
1266 for ( Int_t iPix = 0 ; iPix < TRIGGER_PIXELS; iPix++ ) {
1267 Muster[iPix] = kFALSE ;
1268 Neighb[iPix] = kFALSE ;
1269 // Select pixels which are used and it the current cell
1270 if ( used [iPix] == TRUE && TC[iCell][iPix]==TRUE) {
1271 //
1272 // now check the diskriminated signal
1273 //
1274 if ( d_sig [iPix][iSli] > 0. ) {
1275 Muster[iPix] = kTRUE ;
1276 }
1277 }
1278 } // end of loop over the pixels
1279
1280 //
1281 // Here we check which of the "muster" pixels will be fired for
1282 // the minimum required overlaping time
1283 //
1284
1285 OverlapingTime(Muster, &Muster[0],iSli);
1286
1287 //
1288 // here we have to look for the topologies
1289 //
1290
1291 switch(trigger_geometry){
1292 case 0:{
1293
1294 // It looks for a pixel above threshold which has
1295 // trigger_multi-1 neighbour pixels above threshold
1296
1297 Bool_t Dummy[TRIGGER_PIXELS] ;
1298
1299 // Loop over all pixels
1300 for (int j=0;j<TRIGGER_PIXELS;j++){
1301
1302 for (int k=0; k<TRIGGER_PIXELS; k++){
1303 Neighb[k]=kFALSE;
1304
1305 Dummy[k] = Muster[k] ;
1306 }
1307 if(Muster[j]){
1308 // If pixel is fired, it checks how many fired neighbours it has
1309 for (iMulti=1;iMulti<trigger_multi; iMulti++) {
1310 Neighb[j] = kTRUE ;
1311 Dummy[j] = kTRUE ;
1312 if (!PassNextNeighbour(Dummy, &Neighb[0])){
1313 break;
1314 }
1315 for (int k=0; k<TRIGGER_PIXELS; k++){
1316 if (Neighb[k]){
1317 Dummy[k]=kFALSE;
1318 Neighb[k]=kFALSE;
1319 }
1320 }
1321 }
1322 if (iMulti==trigger_multi ) {
1323 //
1324 // A NN-Trigger is detected at time Slice
1325 //
1326 PixelsFirst[nFirst] = j; // We save pixel that triggers
1327 SlicesFirst[nFirst++] = iSli ; // We save time when it triggers
1328 iReturn++ ;
1329 iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
1330 iCell=TRIGGER_CELLS; // We skip the remaining trigger cells
1331 break ;
1332 }
1333 }
1334 }
1335 break;
1336 };
1337
1338 case 1:{
1339
1340 // It looks for trigger_multi neighbour pixels above the
1341 // threshold.
1342
1343 for (int j=0;j<TRIGGER_PIXELS;j++){
1344 if(Muster[j]){
1345 // It checks if you can find
1346 // trigger_multi fired neighbour pixels
1347 Neighb[j] = kTRUE ;
1348 for (iMulti=1;iMulti<trigger_multi; iMulti++) {
1349 if (!PassNextNeighbour(Muster, &Neighb[0]))
1350 break;
1351 }
1352 if (iMulti==trigger_multi ) {
1353 //
1354 // A NN-Trigger is detected at time Slice
1355 //
1356 PixelsFirst[nFirst] = j; // We save pixel that triggers
1357 SlicesFirst[nFirst++] = iSli ; // We save when it triggers
1358 iReturn++ ;
1359 iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
1360 iCell=TRIGGER_CELLS; // We skip the remaining trigger cells
1361 break ;
1362 }
1363 else {
1364 // We put Neighb to kFALSE to check an other pixel
1365 for (int k=0; k<TRIGGER_PIXELS; k++){
1366 if (Neighb[k]){
1367 Neighb[k]=kFALSE;
1368 }
1369 }
1370 }
1371 }
1372 }
1373 break;
1374 };
1375 case 2:{
1376
1377 // It looks for trigger_multi closed pack neighbours
1378 // above threshold
1379 // Closed pack means that you can take out any pixel
1380 // and you will still get a trigger for trigger_multi -1
1381 // The algorithm is not perfect, there still somes cases
1382 // that are not really well treated
1383
1384 Int_t closed_pack = 1;
1385
1386 for (int j=0;j<TRIGGER_PIXELS;j++){
1387 if(Muster[j]){
1388 // It checks if there are trigger_multi
1389 // neighbours above threshold
1390
1391 Neighb[j] = kTRUE ;
1392 iMulti=1;
1393
1394 //while(PassNextNeighbour(Muster, &Neighb[0])) iMulti++;
1395 for (iMulti=1;iMulti<trigger_multi;iMulti++){
1396 if (!PassNextNeighbour(Muster, &Neighb[0]))
1397 break;
1398 }
1399
1400 if (iMulti==trigger_multi ) {
1401 //
1402 // A NN-Trigger is detected at time Slice
1403 //
1404
1405 // Check if there is closed pack topology
1406
1407 Bool_t Aux1[TRIGGER_PIXELS];
1408 Bool_t Aux2[TRIGGER_PIXELS];
1409 for (int jj=0;jj<TRIGGER_PIXELS;jj++)
1410 Aux2[jj]=kFALSE;
1411
1412 for (int i=0;i<TRIGGER_PIXELS;i++){
1413 if (Neighb[i]) {
1414 // Loop over pixels that achive neighbouring condition
1415
1416 for (int jj=0;jj<TRIGGER_PIXELS;jj++) {
1417
1418 Aux1[jj] = Neighb[jj] ; // huschel
1419 Aux2[jj]=kFALSE;
1420 }
1421
1422 // It checks if taking out any of the pixels we lose
1423 // neighbouring condition for trigger_multi -1
1424
1425 Aux1[i]=kFALSE;
1426 closed_pack=0;
1427 for (int jj=0;jj<TRIGGER_PIXELS;jj++) {
1428 if (Aux1[jj]==kTRUE){
1429 Aux2[jj]=kTRUE;
1430 for (iMulti=1;iMulti<(trigger_multi-1);iMulti++){
1431 if (!PassNextNeighbour(Aux1, &Aux2[0]))
1432 break;
1433 }
1434 if (iMulti==(trigger_multi-1)){
1435 // We found a NN trigger for trigger_multi -1
1436 // taking out pixel jj
1437 closed_pack=1;
1438 break;
1439 }
1440 Aux2[jj]=kFALSE;
1441 }
1442 }
1443 if (!closed_pack) break;
1444 // For some pixell we did not found NN condition
1445 // for trigger_multi -1
1446 }
1447 }
1448 if (closed_pack){
1449 PixelsFirst[nFirst] = j; // We save pixel that triggers
1450 SlicesFirst[nFirst++] = iSli ; // We save time when it triggers
1451 iReturn++ ;
1452 iSli+=(50*SLICES_PER_NSEC); // We skip the following 50 ns (dead time)
1453 iCell=TRIGGER_CELLS; // We skip the remaining trigger cells
1454 break ;
1455 }
1456 else {
1457 for (int k=0; k<TRIGGER_PIXELS; k++){
1458 if (Neighb[k]){
1459 Neighb[k]=kFALSE;
1460 }
1461 }
1462 }
1463 } // end if trigger multiplicity achived
1464 else{
1465 for (int k=0; k<TRIGGER_PIXELS; k++)
1466 Neighb[k]=kFALSE;
1467 }
1468 } // end if pixel fired
1469 } // end loop trigger pixels
1470 break;
1471 }; // end case 2:
1472 default:{
1473 cout << "This topology is not implemented yet"<<endl;
1474 break;
1475 }
1476 }
1477 } //end loop over trigger cells.
1478 }
1479 } // end of loop over the slices
1480 } // end of conditional for a trigger Zero
1481
1482 //
1483 // return the Number of FirstLevel Triggers
1484 //
1485 return iReturn ;
1486}
1487
1488
1489Bool_t MTrigger::PassNextNeighbour ( Bool_t m[], Bool_t *n) {
1490 //
1491 // This function is looking for a next neighbour of pixels in n[]
1492 // above triggers using a NNlookup table.
1493 // This table is builded by the default constructor
1494 //
1495
1496 //
1497 // loop over all trigger pixels
1498 //
1499
1500 Bool_t return_val = kFALSE;
1501
1502 for ( Int_t i=0; i<TRIGGER_PIXELS; i++) {
1503 //
1504 // check if this pixel has a diskrminator signal
1505 // (this is inside n[] )
1506 //
1507
1508 if ( n[i] && !return_val) {
1509
1510 //
1511 // look in the next neighbours from the lookuptable
1512 //
1513
1514 for ( Int_t kk=0; kk<6; kk++ ) {
1515 //
1516 // if the nextneighbour is outside the triggerarea do nothing
1517 //
1518 if (!return_val){
1519 if (NN[i][kk] >= TRIGGER_PIXELS ) {
1520
1521 }
1522 // the nextneighbour is not inside the TRIGGER_PIXELS
1523 else {
1524 //
1525 // look if the boolean of nn pixels is true
1526 //
1527
1528 if ( m[ NN[i][kk] ] && !n[NN[i][kk]] ) {
1529 n[NN[i][kk]]=kTRUE ;
1530 return_val =kTRUE;
1531 }
1532 }
1533 }
1534 else break;
1535 }
1536 }
1537 }
1538 return(return_val);
1539}
1540
1541Float_t MTrigger::GetFirstLevelTime( Int_t il ){
1542
1543 //=============================================================
1544 //
1545 // It gives the time for the il trigger at first level
1546
1547 return((Float_t) ((Float_t) SlicesFirst[il]/((Float_t) SLICES_PER_NSEC)));
1548}
1549
1550Int_t MTrigger::GetFirstLevelPixel( Int_t il ){
1551
1552 //=============================================================
1553 //
1554 // It gives the pixel that triggers for the il trigger at first level
1555 return(PixelsFirst[il]);
1556}
1557
1558void MTrigger::OverlapingTime ( Bool_t m[], Bool_t *n, Int_t ifSli){
1559
1560 //============================================================
1561 //
1562 // It returns in n the pixels of m that are fired during the
1563 // required overlaping time for trigger after ifSli
1564
1565 int i,j;
1566 int iNumSli;
1567
1568 // Translation from ns to slices
1569 iNumSli=(int) (overlaping_time*SLICES_PER_NSEC);
1570 if (iNumSli<1) iNumSli=1;
1571
1572 // Put pixels that fulfill the requirement in n
1573 for (i=0;i<TRIGGER_PIXELS;i++){
1574 if (m[i]==kTRUE){
1575 for(j=ifSli;j<ifSli+iNumSli;j++){
1576 if(!d_sig[i][j]){
1577 n[i]=kFALSE;
1578 break;
1579 }
1580 }
1581 }
1582 }
1583
1584}
1585
1586
1587
Note: See TracBrowser for help on using the repository browser.