#ifndef __MTrigger__ #define __MTrigger__ #define CASE_SHOW 0 #define CASE_NSB 1 #define CASE_STAR 2 // class MTrigger // // implemented by Harald Kornmayer // // This is a class to simulate the trigger. // It assumes a special response of the PMT for one single Photo-electron. // // // #include #include #include "TROOT.h" #include "TObject.h" #include "TRandom.h" #include "TH1.h" #include "Mdefine.h" #include "MMcEvt.h" #include "MTriggerDefine.h" //========== // MTrigger // // The simulation of the Trigger for MonteCarlo Events is using this // class. So all methods concerning the trigger should be done inside this // class. // // For a better understanding of the behavior of the trigger is here small // abstract of the trigger. This may change in the future. // // // We now from the camera program (This is the surrounding of the class // MTrigger.) that one photo electron leaves at time t the photo cathode // of the pixel number iPix). // // At the end of the PMT, the preamp, the optical fiber transmission we // get a signal of a given shape. After some discussion with Eckart the // standard response function looks like this : // // It is a gaussian Signal with a given FWHM. // // So whenever a photo electron leaves the photo cathod, on has to add // the standard response function to the analog signal of the pixel. // // Each pixel of the camera has such an summed-up analog signal. It may // look like this picture: // // // This is the input of the discriminator for the pixels. The output of // the discriminator is a digital signal. The response of the diskriminator // is not fixed at the moment. There are discussion about this topic. // // At the moment the response is very simple. Whenever the analog signal // is crossing a defined threshold from below to above, a digital signal // with a given length is created. // // No one can start with the simulation of different trigger levels. // // The TriggerLevelZero is a very easy one. It is just looking if there // are more then N digital signals at level ON (=1). If this is the case, // a TriggerLevelZero signal is created. // // The TriggerLevelOne is not implemented now. This will be a kind of next // neighbour condition (i.e. four neigbouring analog signals at the same // time, but this requests at least four digital signals at level ON, what // is equivalent with a TriggerLevelZero. // // class MTrigger { private: // // then for all pixels the shape of all the analog signals // Bool_t used [TRIGGER_PIXELS] ; // a boolean to indicated if the pixels is used in this event Int_t nphotshow[TRIGGER_PIXELS]; // count the photo electrons per pixel coming from showers Int_t nphotnsb[TRIGGER_PIXELS]; // count the photo electrons per pixel coming from NSB Int_t nphotstar[TRIGGER_PIXELS]; // count the photo electrons per pixel coming from stars Float_t *a_sig[TRIGGER_PIXELS] ; // the analog signal for pixels Float_t baseline[TRIGGER_PIXELS] ; // for the baseline shift // // then for all pixels the shape of the digital signal // Bool_t dknt [TRIGGER_PIXELS] ; // a boolean to indicated if the pixels has passed the diskrminator Float_t *d_sig[TRIGGER_PIXELS] ; // the digital signal for all pixels // // and the sum of all digital signals // Float_t sum_d_sig[TRIGGER_TIME_SLICES] ; // // first the data for the response function // Float_t fwhm_resp ; // fwhm of the phe_response function Float_t ampl_resp ; // amplitude of the phe_response function (in mV) Float_t sing_resp[ RESPONSE_SLICES ] ; // the shape of the phe_response function Float_t peak_time ; // the time from the start of the response function to the maximum peak TH1F *histPmt ; Float_t histMean ; // Mean value of the distribution of Rasmik (stored in histPmt) TRandom *GenElec ; // RandomGenerator for the Electronic Noise // // some values for the trigger settings // Float_t chan_thres[TRIGGER_PIXELS] ; // the threshold (in mV) for each individuel pixels Float_t gate_leng ; // the length of the digital signal if analog signal is above threshold Float_t trigger_multi ; // Number of Pixels requested for a Trigger Int_t trigger_geometry ; // 0 means a pixel with trigger_multi-1 neighbours // 1 means trigger_multi neighbours // 2 means trigger_multi closed neighbours // // The lookup table for the next neighbours // Int_t NN[TRIGGER_PIXELS][6] ; // // some information about the different TriggerLevels in each Event // Int_t nZero ; // how many ZeroLevel Trigger in one Event Bool_t SlicesZero[TRIGGER_TIME_SLICES] ; // Times Slices at which the ZeroLevel Triggers occur Int_t nFirst ; // how many FirstLevel Trigger in one Event Int_t SlicesFirst[5] ; // Times Slices at which the FirstLevel Triggers occur Int_t PixelsFirst[5] ; // Pixel which fires the trigger Int_t nSecond ; // how many SecondLevel Trigger in one Event Int_t SlicesSecond[5] ; // Times Slices at which the SecondLevel Triggers occur Int_t PixelsSecond[5] ; // Pixel which fires the trigger private: Float_t Fill( Int_t, Float_t, Int_t ) ; Bool_t PassNextNeighbour( Bool_t m[], Bool_t *n) ; public: MTrigger() ; MTrigger(float gate, float ampl, float fwhm) ; ~MTrigger() ; void Reset() ; void ClearZero() ; void ClearFirst() ; Float_t FillShow( Int_t, Float_t ) ; Float_t FillNSB( Int_t, Float_t ) ; Float_t FillStar( Int_t, Float_t ) ; void ElecNoise() ; void SetResponseShape(); void SetMultiplicity (Int_t multi); void SetTopology (Int_t topo); void SetThreshold (Float_t thres[]); void ReadThreshold (char name[]); void ReadParam(char name[]); Float_t GetMultiplicity (){ return(trigger_multi); } Int_t GetTopology (){ return(trigger_geometry); } Float_t GetThreshold (Int_t il){ return(chan_thres[il]); } void Diskriminate() ; void ShowSignal (MMcEvt *McEvt) ; Int_t ZeroLevel() ; Int_t FirstLevel() ; Float_t GetFirstLevelTime( Int_t il ) ; Int_t GetFirstLevelPixel( Int_t il ) ; } ; #endif