1 | \section{Signal Reconstruction Algorithms}
|
---|
2 |
|
---|
3 | \ldots {\it In this section, the extractors are described, especially w.r.t. which free parameters are left to play,
|
---|
4 | how they subtract the pedestal, how they compare between calibration and cosmics pulses and how an
|
---|
5 | extraction in case of a pure pedestal event takes place. }
|
---|
6 | \newline
|
---|
7 | \newline
|
---|
8 | {\it Missing coding:
|
---|
9 | \begin{itemize}
|
---|
10 | \item Implementing a low-gain extraction based on the high-gain information \ldots Arnau
|
---|
11 | \item Real fit to the expected pulse shape \ldots Hendrik, Wolfgang ???
|
---|
12 | \end{itemize}
|
---|
13 | }
|
---|
14 |
|
---|
15 | \subsection{Pure signal extractors}
|
---|
16 |
|
---|
17 | The pure signal extractors have in common that they compute only the
|
---|
18 | signal, but no arrival time. All treated extractors here derive from the MARS-base
|
---|
19 | class {\textit{MExtractor}} which provides the following facilities:
|
---|
20 |
|
---|
21 | \begin{itemize}
|
---|
22 | \item The global extraction limits can be set from outside
|
---|
23 | \item FADC saturation is kept track off
|
---|
24 | \end{itemize}
|
---|
25 |
|
---|
26 | The following free adjustable parameters have to be set from outside:
|
---|
27 | \begin{description}
|
---|
28 | \item[Global extraction limits:\xspace] Limits in between the extractor is allowed
|
---|
29 | to search.
|
---|
30 | \end{description}
|
---|
31 |
|
---|
32 | \subsubsection{Fixed Window}
|
---|
33 |
|
---|
34 | This extractor is implemented in the MARS-class {\textit{MExtractFixedWindow}}.
|
---|
35 | It simply adds the FADC contents in the allowed ranges.
|
---|
36 | As it does not correct for the clock-noise, only an even number of samples is allowed.
|
---|
37 |
|
---|
38 | \subsubsection{Fixed Window with global Peak Search}
|
---|
39 |
|
---|
40 | This extractor is implemented in the MARS-class {\textit{MExtractFixedWindowPeakSearch}}.
|
---|
41 | It first fixes a reference point defined as the highest sum of
|
---|
42 | consecutive non-saturating FADC slices in a (smaller) peak-search window. This reference
|
---|
43 | point removes the coherent movement of the arrival times over whole camera due to the trigger jitter.
|
---|
44 |
|
---|
45 | Then, simply adds the FADC contents around the reference point in a fixed window manner.
|
---|
46 | It loops twice over the all pixels every event, because it first has to find the reference point.
|
---|
47 | As it does not correct for the clock-noise, only an even number of samples is allowed.
|
---|
48 |
|
---|
49 | The following free adjustable parameters have to be set from outside:
|
---|
50 | \begin{description}
|
---|
51 | \item[Peak Search Window:\xspace] Defines the ``sliding window'' in which the peaking sum is
|
---|
52 | searched for (default: 4 slices)
|
---|
53 | \item[Offset from Window:\xspace] Defines the offset from the found reference point to start
|
---|
54 | extracting the fixed window (default: 1 slice)
|
---|
55 | \item[Low-Gain Peak shift:\xspace] Defines the shift in the low-gain with respect to the peak found
|
---|
56 | in the high-gain (default: 1 slice)
|
---|
57 | \end{description}
|
---|
58 |
|
---|
59 | \subsubsection{Fixed Window with integrated cubic spline}
|
---|
60 |
|
---|
61 | This extractor is implemented in the MARS-class {\textit{MExtractFixedWindowSpline}}.
|
---|
62 | It uses a cubic spline algorithm, adapted from \cite{NUMREC}.
|
---|
63 | It integrated the
|
---|
64 | spline interpolated FADC slice values, counting the edge slices as half.
|
---|
65 | As it does not correct for the clock-noise, only an odd number of samples is allowed.
|
---|
66 |
|
---|
67 | \subsection{Combined extractors}
|
---|
68 |
|
---|
69 | The combined extractors have in common that they compute the arrival time and
|
---|
70 | the signal in one step. All treated combined extractors here derive from the MARS-base
|
---|
71 | class {\textit{MExtractTimeAndCharge}} which provides the following facilities:
|
---|
72 |
|
---|
73 | \begin{itemize}
|
---|
74 | \item Only one loop over all pixels is performed
|
---|
75 | \item The individual FADC slice values get the clock-noise-corrected pedestals immediately subtracted.
|
---|
76 | \item The low-gain extraction range is adapted dynamically, based on the computed arrival time
|
---|
77 | from the high-gain samples
|
---|
78 | \item Extracted times from the low-gain samples get corrected for the intrinsic time delay of the low-gain
|
---|
79 | pulse
|
---|
80 | \item The global extraction limits can be set from outside
|
---|
81 | \item FADC saturation is kept track off
|
---|
82 | \end{itemize}
|
---|
83 |
|
---|
84 | The following free adjustable parameters have to be set from outside:
|
---|
85 | \begin{description}
|
---|
86 | \item[Global extraction limits:\xspace] Limits in between the extractor is allowed
|
---|
87 | to search. They are fixed by the extractor for the high-gain, but re-adjusted for
|
---|
88 | every event in the low-gain, depending on the arrival time found in the low-gain.
|
---|
89 | However, the dynamically adjusted window is not allowed to pass beyond the global
|
---|
90 | limits.
|
---|
91 | \item[Low-gain start shift:\xspace] Global shift between the computed high-gain arrival
|
---|
92 | time and the start of the low-gain extraction limit (corrected for the intrinsic time offset).
|
---|
93 | This variable tells where the extractor is allowed to start searching for the low-gain signal
|
---|
94 | if the high-gain arrival time is known. It avoids that the extractor gets confused by possible high-gain
|
---|
95 | signals leaking into the ``low-gain'' region.
|
---|
96 | \end{description}
|
---|
97 |
|
---|
98 | \ldots {\it Note for the usage of this class together with {\textit{MJCalibration}}: In order to access the
|
---|
99 | arrival times computed by these classes, the option: MJCalibration::SetTimeAndCharge() has to
|
---|
100 | be chosen} \ldots
|
---|
101 |
|
---|
102 | \subsubsection{Sliding Window with amplitude-weighted time}
|
---|
103 |
|
---|
104 | This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeSlidingWindow}}.
|
---|
105 | It extracts the signal from a sliding window of an adjustable size, for high-gain and low-gain
|
---|
106 | individually (default: 6 and 6) The signal is the one which maximizes the summed
|
---|
107 | (clock-noise and pedestal-corrected) FADC signal over the window.
|
---|
108 | \par
|
---|
109 | The amplitude-weighted arrival time is calculated from the window with
|
---|
110 | the highest integral using the following formula:
|
---|
111 |
|
---|
112 | \begin{equation}
|
---|
113 | t = \frac{\sum_{i=0}^{windowsize} s_i \cdot i}{\sum_{i=0}^{windowsize} i}
|
---|
114 | \end{equation}
|
---|
115 | where $i$ denotes the FADC slice index, starting from the beginning of the derived
|
---|
116 | window and running over the window and $s_i$ the clock-noise and
|
---|
117 | pedestal-corrected FADC value at slice index i.
|
---|
118 | \par
|
---|
119 | The following free adjustable parameters have to be set from outside:
|
---|
120 | \begin{description}
|
---|
121 | \item[Window sizes:\xspace] Independenty for high-gain and low-gain (default: 6,6)
|
---|
122 | \end{description}
|
---|
123 |
|
---|
124 | \subsubsection{Cubic Spline with Sliding Window or Amplitude extraction}
|
---|
125 |
|
---|
126 | This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeSpline}}.
|
---|
127 | It uses a cubic spline algorithm, adapted from \cite{NUMREC}.
|
---|
128 | The following free adjustable parameters have to be set from outside:
|
---|
129 |
|
---|
130 | \begin{description}
|
---|
131 | \item[Time Extraction Type:\xspace] The position of the maximum can be chosen (default) or the
|
---|
132 | position of the half maximum at the rising edge of the pulse
|
---|
133 | \item[Charge Extraction Type:\xspace] The amplitude of the maximum can be chosen (default) or the
|
---|
134 | integrated spline between maximum position minus rise time (default: 1.5 slices) and maximum position plus
|
---|
135 | fall time (default: 4.5 slices). The low-gain signal integrates one slice more at the falling part of the
|
---|
136 | signal.
|
---|
137 | \item[Rise Time and Fall Time:\xspace] Can be adjusted for the integration charge extraction type.
|
---|
138 | \item[Resolution:\xspace] Defined as the maximum allowed difference between the calculated half maximum value and
|
---|
139 | the computed spline value at the arrival time position. Can be adjusted for the half-maximum time extraction
|
---|
140 | type.
|
---|
141 | \end{description}
|
---|
142 |
|
---|
143 | \subsubsection{Digital Filter}
|
---|
144 |
|
---|
145 | This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeDigitalFilter}}.
|
---|
146 |
|
---|
147 |
|
---|
148 | The goal of the digital filtering method \cite{OF94,OF77} is to optimally reconstruct the amplitude and time origin of a signal with a known signal shape from discrete measurements of the signal. Thereby the noise contribution to the amplitude reconstruction is minimized.
|
---|
149 |
|
---|
150 | For the digital filtering method two assumptions have to be made:
|
---|
151 |
|
---|
152 | \begin{itemize}
|
---|
153 | \item{The normalized signal shape has to be independent of the signal amplitude.}
|
---|
154 | \item{The noise properties have to be independent of the signal amplitude.}
|
---|
155 | \end{itemize}
|
---|
156 |
|
---|
157 | Let $g(t)$ be the normalized signal shape, $E$ the signal amplitude and $\tau$ the time shift of the physical signal from the predicted signal shape. Then the time dependence of the signal, $y(t)$, is given by:
|
---|
158 |
|
---|
159 | \begin{equation}
|
---|
160 | y(t)=E \cdot g(t-\tau) + b(t) \ ,
|
---|
161 | \end{equation}
|
---|
162 |
|
---|
163 | where $b(t)$ is the time dependent noise distribution. For small time shifts $\tau$ the time dependence can be linearized by the use of a Taylor expansion:
|
---|
164 |
|
---|
165 | \begin{equation} \label{shape_taylor_approx}
|
---|
166 | y(t)=E \cdot g(t) - E\tau \cdot \dot{g}(t) + b(t) \ ,
|
---|
167 | \end{equation}
|
---|
168 |
|
---|
169 | where $\dot{g}(t)$ is the time derivative of the signal shape. Discrete
|
---|
170 | measurements $y_i$ of the signal at times $t_i \ (i=1,...,n)$ have the form:
|
---|
171 |
|
---|
172 | \begin{equation}
|
---|
173 | y_i=E \cdot g_i- E\tau \cdot \dot{g}_i +b_i \ .
|
---|
174 | \end{equation}
|
---|
175 |
|
---|
176 | The correlation of the noise contributions at times $t_i$ and $t_j$ is expressed in the noise autocorrelation matrix $\boldsymbol{B}$:
|
---|
177 |
|
---|
178 | \begin{equation}
|
---|
179 | \boldsymbol{B_{ij}} = \langle b_i b_j \rangle - \langle b_i \rangle \langle b_j
|
---|
180 | \rangle \ .
|
---|
181 | \end{equation}
|
---|
182 | %\equiv \langle b_i b_j \rangle with $\langle b_i \rangle = 0$.
|
---|
183 |
|
---|
184 | The signal amplitude, $E$, and the product of amplitude and time shift, $E \tau$, can be estimated from the given set of
|
---|
185 | measurements $\boldsymbol{y} = (y_1, ... ,y_n)$ by minimizing:
|
---|
186 |
|
---|
187 | \begin{eqnarray}
|
---|
188 | \chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_i) \\
|
---|
189 | &=& (\boldsymbol{y} - E
|
---|
190 | \boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ ,
|
---|
191 | \end{eqnarray}
|
---|
192 |
|
---|
193 | where the last expression is matricial. The minimum is obtained for:
|
---|
194 |
|
---|
195 | \begin{equation}
|
---|
196 | \frac{\partial \chi^2(E, E\tau)}{\partial E} = 0 \qquad \text{and} \qquad \frac{\partial \chi^2(E, E\tau)}{\partial(E\tau)} = 0 \ .
|
---|
197 | \end{equation}
|
---|
198 |
|
---|
199 | This leads to the following two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude and time offset $\overline{E\tau}$:
|
---|
200 |
|
---|
201 | \begin{eqnarray}
|
---|
202 | 0&=&-\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau}
|
---|
203 | \\
|
---|
204 | 0&=&-\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau} \ .
|
---|
205 | \end{eqnarray}
|
---|
206 |
|
---|
207 | Solving these equations one gets the solutions:
|
---|
208 |
|
---|
209 | \begin{equation}
|
---|
210 | \overline{E}= \boldsymbol{w}_{\text{amp}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{amp}} = \frac{ (\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \boldsymbol{g} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ ,
|
---|
211 | \end{equation}
|
---|
212 |
|
---|
213 | \begin{equation}
|
---|
214 | \overline{E\tau}= \boldsymbol{w}_{\text{time}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{time}} = \frac{ ({\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} {\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ .
|
---|
215 | \end{equation}
|
---|
216 |
|
---|
217 |
|
---|
218 | Thus $\overline{E}$ and $\overline{E\tau}$ are given by a weighted sum of the discrete measurements $y_i$ with the digital filtering weights for the amplitude, $w_{\text{amp},i}$, and time shift, $w_{\text{time},i}$.
|
---|
219 |
|
---|
220 | Because of the truncation of the Taylor series in equation (\ref{shape_taylor_approx}) the above results are only valid for vanishing time offsets $\tau$. For non-zero time offsets one has to iterate the problem using the time shifted signal shape $g(t-\tau)$.
|
---|
221 |
|
---|
222 | The covariance matrix $\boldsymbol{V}$ of $\overline{E}$ and $\overline{E\tau}$ is given by:
|
---|
223 |
|
---|
224 | \begin{equation}
|
---|
225 | \boldsymbol{V}^{-1}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in [E, E\tau] \ .
|
---|
226 | \end{equation}
|
---|
227 |
|
---|
228 | The expected contribution of the noise to the estimated amplitude, $\sigma_E$, is:
|
---|
229 |
|
---|
230 | \begin{equation}\label{of_noise}
|
---|
231 | \sigma_E^2=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
|
---|
232 | \end{equation}
|
---|
233 |
|
---|
234 | The expected contribution of the noise to the estimated timing ,$\sigma_{\tau}$, is:
|
---|
235 |
|
---|
236 | \begin{equation}\label{of_noise_time}
|
---|
237 | E^2 \cdot \sigma_{\tau}^2=\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
|
---|
238 | \end{equation}
|
---|
239 |
|
---|
240 | For the MAGIC signals, as implemented in the MC simulations, a pedestal RMS of a single FADC slice of 4 FADC counts introduces an error in the reconstructed signal and time of:
|
---|
241 |
|
---|
242 | \begin{equation}\label{of_noise}
|
---|
243 | \sigma_E \approx 8.3 \ \mathrm{FADC\ counts} \qquad \sigma_{\tau} \approx \frac{6.5\ \Delta T_{\mathrm{FADC}}}{E\ /\ \mathrm{FADC\ counts}} \ ,
|
---|
244 | \end{equation}
|
---|
245 |
|
---|
246 | where $\Delta T_{\mathrm{FADC}} = 3.33$ ns is the sampling intervall of the MAGIC FADCs.
|
---|
247 |
|
---|
248 | In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed:
|
---|
249 |
|
---|
250 | \begin{equation}
|
---|
251 | e_{i_0}=\sum_{i=i_0}^{i=i_0+5} w_{\mathrm{amp}(t_i)}y(t_{i+i_0}) \qquad e\tau_{i_0}=\sum_{i=i_0}^{i=i_0+5} w(t_i)_{\mathrm{time}(t_i)}y(t_{i+i_0})
|
---|
252 | \end{equation}
|
---|
253 |
|
---|
254 | for all possible signal start samples $i_0$. Let $i_0^*$ be the signal start sample with the largest $e_{i_0}$. Then in a seconst step the timing offset $\tau$ is calculated:
|
---|
255 |
|
---|
256 | \begin{equation}
|
---|
257 | \tau=\frac{e\tau_{i_0^*}}{e_{i_0^*}}
|
---|
258 | \end{equation}
|
---|
259 |
|
---|
260 | and the weigths iterated:
|
---|
261 |
|
---|
262 | \begin{equation}
|
---|
263 | E_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w_{\mathrm{amp}(t_i - \tau)}y(t_{i+i_0^*}) \qquad E \tau_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w(t_i - \tau)_{\mathrm{time}(t_i)}y(t_{i+i_0^*}) \ .
|
---|
264 | \end{equation}
|
---|
265 |
|
---|
266 | The reconstructed signal is then taken to be $E_{i_0^*}$ and the reconstructed arrival time $t_{\text{arrival}}$ is
|
---|
267 |
|
---|
268 | \begin{equation}
|
---|
269 | t_{\text{arrival}} = i_0^* + \tau_{i_0^*} + \tau \ .
|
---|
270 | \end{equation}
|
---|
271 |
|
---|
272 |
|
---|
273 |
|
---|
274 | % This does not apply for MAGIC as the LONs are giving always a correlated noise (in addition to the artificial shaping)
|
---|
275 |
|
---|
276 | %In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is:
|
---|
277 |
|
---|
278 | %\begin{equation}
|
---|
279 | %\boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ ,
|
---|
280 | %\end{equation}
|
---|
281 |
|
---|
282 | %where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes:
|
---|
283 |
|
---|
284 |
|
---|
285 | %\begin{equation}
|
---|
286 | %\frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ .
|
---|
287 | %\end{equation}
|
---|
288 |
|
---|
289 |
|
---|
290 |
|
---|
291 | \ldots {\it Hendrik ... }
|
---|
292 |
|
---|
293 | The following free adjustable parameters have to be set from outside:
|
---|
294 |
|
---|
295 | \begin{description}
|
---|
296 | \item[Weights File:\xspace]
|
---|
297 | \item[Window Sizes:\xspace]
|
---|
298 | \item[Binning Resolution:\xspace]
|
---|
299 | \end{description}
|
---|
300 |
|
---|
301 | \subsubsection{Real fit to the expected pulse shape }
|
---|
302 |
|
---|
303 | This extractor is not yet implemented as MARS-class...
|
---|
304 | \par
|
---|
305 | It fit the pulse shape to a Landau convoluted with a Gaussian using the following
|
---|
306 | parameters:...
|
---|
307 |
|
---|
308 | \ldots {\it Hendrik, Wolfgang ... }
|
---|
309 |
|
---|
310 |
|
---|
311 | \subsection{Used Extractors for this Analysis}
|
---|
312 |
|
---|
313 | We propose to test the following parameterized extractors:
|
---|
314 |
|
---|
315 | \begin{description}
|
---|
316 | \item[MExtractFixedWindow]: with the following parameters, if {\textit{maxbin}} defines the
|
---|
317 | mean position of the High-Gain FADC slice carrying the pulse maximum:
|
---|
318 | \begin{enumerate}
|
---|
319 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}+0.5,{\textit{maxbin}}+3.5);
|
---|
320 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}-1.5,{\textit{maxbin}}+4.5);
|
---|
321 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
---|
322 | \item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+4,{\textit{maxbin}}-1.5,{\textit{maxbin}}+5.5);
|
---|
323 | \item SetRange({\textit{maxbin}}-5,{\textit{maxbin}}+8,{\textit{maxbin}}-1.5,{\textit{maxbin}}+7.5);
|
---|
324 | \suspend{enumerate}
|
---|
325 | \item[MExtractFixedWindowSpline]: with the following parameters, if {\textit{maxbin}} defines the
|
---|
326 | mean position of the High-Gain FADC slice carrying the pulse maximum:
|
---|
327 | \resume{enumerate}
|
---|
328 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}+0.5,{\textit{maxbin}}+3.5);
|
---|
329 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}-1.5,{\textit{maxbin}}+4.5);
|
---|
330 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
---|
331 | \item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+4,{\textit{maxbin}}-1.5,{\textit{maxbin}}+5.5);
|
---|
332 | \item SetRange({\textit{maxbin}}-5,{\textit{maxbin}}+8,{\textit{maxbin}}-1.5,{\textit{maxbin}}+7.5);
|
---|
333 | \suspend{enumerate}
|
---|
334 | \item[MExtractFixedWindowPeakSearch]: with the following parameters: \\
|
---|
335 | SetRange(0,18,2,14); and:
|
---|
336 | \resume{enumerate}
|
---|
337 | \item SetWindows(2,2,2);
|
---|
338 | \item SetWindows(4,4,2);
|
---|
339 | \item SetWindows(6,6,4);
|
---|
340 | \item SetWindows(4,6,4);
|
---|
341 | \item SetWindows(8,8,4);
|
---|
342 | \item SetWindows(14,10,4);
|
---|
343 | \suspend{enumerate}
|
---|
344 | \item[MExtractTimeAndChargeSlidingWindow]: with the following parameters: \\
|
---|
345 | SetRange(0,18,2,14); and:
|
---|
346 | \resume{enumerate}
|
---|
347 | \item SetWindowSize(2,2);
|
---|
348 | \item SetWindowSize(4,4);
|
---|
349 | \item SetWindowSize(6,6);
|
---|
350 | \item SetWindowSize(4,6);
|
---|
351 | \item SetWindowSize(8,8);
|
---|
352 | \item SetWindowSize(14,10);
|
---|
353 | \suspend{enumerate}
|
---|
354 | \item[MExtractTimeAndChargeSpline]: with the following parameters:\\
|
---|
355 | SetChargeType(MExtractTimeAndChargeSpline::kIntegral); \\
|
---|
356 | SetRange(0,18,2,14); \\
|
---|
357 | and:
|
---|
358 |
|
---|
359 | \resume{enumerate}
|
---|
360 | \item SetRiseTime(1.5); SetFallTime(4.5);
|
---|
361 | \item SetRiseTime(0.5); SetFallTime(2.5);
|
---|
362 | \item SetRiseTime(0.5); SetFallTime(1.5);
|
---|
363 | \item SetRiseTime(0.5); SetFallTime(0.5);
|
---|
364 | \suspend{enumerate}
|
---|
365 | and:
|
---|
366 | \resume{enumerate}
|
---|
367 | \item SetChargeType(MExtractTimeAndChargeSpline::kAmplitude); \\
|
---|
368 | SetRange(0,10,4,11); and:
|
---|
369 | \suspend{enumerate}
|
---|
370 | \item[MExtractTimeAndChargeDigitalFilter]: with the following parameters:
|
---|
371 | \resume{enumerate}
|
---|
372 | \item SetWeightsFile(``cosmic\_weights6.dat'');
|
---|
373 | \item SetWeightsFile(``cosmic\_weights4.dat'');
|
---|
374 | \item SetWeightsFile(``cosmic\_weights\_logain6.dat'');
|
---|
375 | \item SetWeightsFile(``cosmic\_weights\_logain4.dat'');
|
---|
376 | \item SetWeightsFile(``calibration\_weights\_UV6.dat'');
|
---|
377 | \item SetWeightsFile(``calibration\_weights\_UV4.dat'');
|
---|
378 | \item SetWeightsFile(``calibration\_weights\_UV\_logain6.dat'');
|
---|
379 | \item SetWeightsFile(``calibration\_weights\_UV\_logain4.dat'');
|
---|
380 | \suspend{enumerate}
|
---|
381 | \item[``Real Fit'']: (not yet implemented, one try)
|
---|
382 | \resume{enumerate}
|
---|
383 | \item Real Fit
|
---|
384 | \end{enumerate}
|
---|
385 | \end{description}
|
---|
386 |
|
---|
387 |
|
---|
388 | References: \cite{OF77,OF94}.
|
---|
389 |
|
---|
390 |
|
---|
391 | %%% Local Variables:
|
---|
392 | %%% mode: latex
|
---|
393 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
394 | %%% TeX-master: "Algorithms"
|
---|
395 | %%% End:
|
---|