| 1 | \section{Signal Reconstruction Algorithms}
|
|---|
| 2 |
|
|---|
| 3 | \ldots {\it In this section, the extractors are described, especially w.r.t. which free parameters are left to play,
|
|---|
| 4 | how they subtract the pedestal, how they compare between calibration and cosmics pulses and how an
|
|---|
| 5 | extraction in case of a pure pedestal event takes place. }
|
|---|
| 6 | \newline
|
|---|
| 7 | \newline
|
|---|
| 8 | {\it Missing coding:
|
|---|
| 9 | \begin{itemize}
|
|---|
| 10 | \item Implementing a low-gain extraction based on the high-gain information \ldots Arnau
|
|---|
| 11 | \item Real fit to the expected pulse shape \ldots Hendrik, Wolfgang ???
|
|---|
| 12 | \end{itemize}
|
|---|
| 13 | }
|
|---|
| 14 |
|
|---|
| 15 | \subsection{Pure signal extractors}
|
|---|
| 16 |
|
|---|
| 17 | The pure signal extractors have in common that they compute only the
|
|---|
| 18 | signal, but no arrival time. All treated extractors here derive from the MARS-base
|
|---|
| 19 | class {\textit{MExtractor}} which provides the following facilities:
|
|---|
| 20 |
|
|---|
| 21 | \begin{itemize}
|
|---|
| 22 | \item The global extraction limits can be set from outside
|
|---|
| 23 | \item FADC saturation is kept track off
|
|---|
| 24 | \end{itemize}
|
|---|
| 25 |
|
|---|
| 26 | The following free adjustable parameters have to be set from outside:
|
|---|
| 27 | \begin{description}
|
|---|
| 28 | \item[Global extraction limits:\xspace] Limits in between the extractor is allowed
|
|---|
| 29 | to search.
|
|---|
| 30 | \end{description}
|
|---|
| 31 |
|
|---|
| 32 | \subsubsection{Fixed Window}
|
|---|
| 33 |
|
|---|
| 34 | This extractor is implemented in the MARS-class {\textit{MExtractFixedWindow}}.
|
|---|
| 35 | It simply adds the FADC contents in the allowed ranges.
|
|---|
| 36 | As it does not correct for the clock-noise, only an even number of samples is allowed.
|
|---|
| 37 |
|
|---|
| 38 | \subsubsection{Fixed Window with global Peak Search}
|
|---|
| 39 |
|
|---|
| 40 | This extractor is implemented in the MARS-class {\textit{MExtractFixedWindowPeakSearch}}.
|
|---|
| 41 | It first fixes a reference point defined as the highest sum of
|
|---|
| 42 | consecutive non-saturating FADC slices in a (smaller) peak-search window. This reference
|
|---|
| 43 | point removes the coherent movement of the arrival times over whole camera due to the trigger jitter.
|
|---|
| 44 |
|
|---|
| 45 | Then, simply adds the FADC contents around the reference point in a fixed window manner.
|
|---|
| 46 | It loops twice over the all pixels every event, because it first has to find the reference point.
|
|---|
| 47 | As it does not correct for the clock-noise, only an even number of samples is allowed.
|
|---|
| 48 |
|
|---|
| 49 | The following free adjustable parameters have to be set from outside:
|
|---|
| 50 | \begin{description}
|
|---|
| 51 | \item[Peak Search Window:\xspace] Defines the ``sliding window'' in which the peaking sum is
|
|---|
| 52 | searched for (default: 4 slices)
|
|---|
| 53 | \item[Offset from Window:\xspace] Defines the offset from the found reference point to start
|
|---|
| 54 | extracting the fixed window (default: 1 slice)
|
|---|
| 55 | \item[Low-Gain Peak shift:\xspace] Defines the shift in the low-gain with respect to the peak found
|
|---|
| 56 | in the high-gain (default: 1 slice)
|
|---|
| 57 | \end{description}
|
|---|
| 58 |
|
|---|
| 59 | \subsubsection{Fixed Window with integrated cubic spline}
|
|---|
| 60 |
|
|---|
| 61 | This extractor is implemented in the MARS-class {\textit{MExtractFixedWindowSpline}}.
|
|---|
| 62 | It uses a cubic spline algorithm, adapted from \cite{NUMREC}.
|
|---|
| 63 | It integrated the
|
|---|
| 64 | spline interpolated FADC slice values, counting the edge slices as half.
|
|---|
| 65 | As it does not correct for the clock-noise, only an odd number of samples is allowed.
|
|---|
| 66 |
|
|---|
| 67 | \subsection{Combined extractors}
|
|---|
| 68 |
|
|---|
| 69 | The combined extractors have in common that they compute the arrival time and
|
|---|
| 70 | the signal in one step. All treated combined extractors here derive from the MARS-base
|
|---|
| 71 | class {\textit{MExtractTimeAndCharge}} which provides the following facilities:
|
|---|
| 72 |
|
|---|
| 73 | \begin{itemize}
|
|---|
| 74 | \item Only one loop over all pixels is performed
|
|---|
| 75 | \item The individual FADC slice values get the clock-noise-corrected pedestals immediately subtracted.
|
|---|
| 76 | \item The low-gain extraction range is adapted dynamically, based on the computed arrival time
|
|---|
| 77 | from the high-gain samples
|
|---|
| 78 | \item Extracted times from the low-gain samples get corrected for the intrinsic time delay of the low-gain
|
|---|
| 79 | pulse
|
|---|
| 80 | \item The global extraction limits can be set from outside
|
|---|
| 81 | \item FADC saturation is kept track off
|
|---|
| 82 | \end{itemize}
|
|---|
| 83 |
|
|---|
| 84 | The following free adjustable parameters have to be set from outside:
|
|---|
| 85 | \begin{description}
|
|---|
| 86 | \item[Global extraction limits:\xspace] Limits in between the extractor is allowed
|
|---|
| 87 | to search. They are fixed by the extractor for the high-gain, but re-adjusted for
|
|---|
| 88 | every event in the low-gain, depending on the arrival time found in the low-gain.
|
|---|
| 89 | However, the dynamically adjusted window is not allowed to pass beyond the global
|
|---|
| 90 | limits.
|
|---|
| 91 | \item[Low-gain start shift:\xspace] Global shift between the computed high-gain arrival
|
|---|
| 92 | time and the start of the low-gain extraction limit (corrected for the intrinsic time offset).
|
|---|
| 93 | This variable tells where the extractor is allowed to start searching for the low-gain signal
|
|---|
| 94 | if the high-gain arrival time is known. It avoids that the extractor gets confused by possible high-gain
|
|---|
| 95 | signals leaking into the ``low-gain'' region.
|
|---|
| 96 | \end{description}
|
|---|
| 97 |
|
|---|
| 98 | \ldots {\it Note for the usage of this class together with {\textit{MJCalibration}}: In order to access the
|
|---|
| 99 | arrival times computed by these classes, the option: MJCalibration::SetTimeAndCharge() has to
|
|---|
| 100 | be chosen} \ldots
|
|---|
| 101 |
|
|---|
| 102 | \subsubsection{Sliding Window with amplitude-weighted time}
|
|---|
| 103 |
|
|---|
| 104 | This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeSlidingWindow}}.
|
|---|
| 105 | It extracts the signal from a sliding window of an adjustable size, for high-gain and low-gain
|
|---|
| 106 | individually (default: 6 and 6) The signal is the one which maximizes the summed
|
|---|
| 107 | (clock-noise and pedestal-corrected) FADC signal over the window.
|
|---|
| 108 | \par
|
|---|
| 109 | The amplitude-weighted arrival time is calculated from the window with
|
|---|
| 110 | the highest integral using the following formula:
|
|---|
| 111 |
|
|---|
| 112 | \begin{equation}
|
|---|
| 113 | t = \frac{\sum_{i=0}^{windowsize} s_i \cdot i}{\sum_{i=0}^{windowsize} i}
|
|---|
| 114 | \end{equation}
|
|---|
| 115 | where $i$ denotes the FADC slice index, starting from the beginning of the derived
|
|---|
| 116 | window and running over the window and $s_i$ the clock-noise and
|
|---|
| 117 | pedestal-corrected FADC value at slice index i.
|
|---|
| 118 | \par
|
|---|
| 119 | The following free adjustable parameters have to be set from outside:
|
|---|
| 120 | \begin{description}
|
|---|
| 121 | \item[Window sizes:\xspace] Independenty for high-gain and low-gain (default: 6,6)
|
|---|
| 122 | \end{description}
|
|---|
| 123 |
|
|---|
| 124 | \subsubsection{Cubic Spline with Sliding Window or Amplitude extraction}
|
|---|
| 125 |
|
|---|
| 126 | This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeSpline}}.
|
|---|
| 127 | It uses a cubic spline algorithm, adapted from \cite{NUMREC}.
|
|---|
| 128 | The following free adjustable parameters have to be set from outside:
|
|---|
| 129 |
|
|---|
| 130 | \begin{description}
|
|---|
| 131 | \item[Time Extraction Type:\xspace] The position of the maximum can be chosen (default) or the
|
|---|
| 132 | position of the half maximum at the rising edge of the pulse
|
|---|
| 133 | \item[Charge Extraction Type:\xspace] The amplitude of the maximum can be chosen (default) or the
|
|---|
| 134 | integrated spline between maximum position minus rise time (default: 1.5 slices) and maximum position plus
|
|---|
| 135 | fall time (default: 4.5 slices). The low-gain signal integrates one slice more at the falling part of the
|
|---|
| 136 | signal.
|
|---|
| 137 | \item[Rise Time and Fall Time:\xspace] Can be adjusted for the integration charge extraction type.
|
|---|
| 138 | \item[Resolution:\xspace] Defined as the maximum allowed difference between the calculated half maximum value and
|
|---|
| 139 | the computed spline value at the arrival time position. Can be adjusted for the half-maximum time extraction
|
|---|
| 140 | type.
|
|---|
| 141 | \end{description}
|
|---|
| 142 |
|
|---|
| 143 | \subsubsection{Digital Filter}
|
|---|
| 144 |
|
|---|
| 145 | This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeDigitalFilter}}.
|
|---|
| 146 |
|
|---|
| 147 |
|
|---|
| 148 | The goal of the digital filtering method \cite{OF94,OF77} is to optimally reconstruct the amplitude and time origin of a signal with a known signal shape from discrete measurements of the signal. Thereby the noise contribution to the amplitude reconstruction is minimized.
|
|---|
| 149 |
|
|---|
| 150 | For the digital filtering method two assumptions have to be made:
|
|---|
| 151 |
|
|---|
| 152 | \begin{itemize}
|
|---|
| 153 | \item{The normalized signal shape has to be independent of the signal amplitude.}
|
|---|
| 154 | \item{The noise properties have to be independent of the signal amplitude.}
|
|---|
| 155 | \end{itemize}
|
|---|
| 156 |
|
|---|
| 157 | Let $g(t)$ be the normalized signal shape, $E$ the signal amplitude and $\tau$ the time shift of the physical signal from the predicted signal shape. Then the time dependence of the signal, $y(t)$, is given by:
|
|---|
| 158 |
|
|---|
| 159 | \begin{equation}
|
|---|
| 160 | y(t)=E \cdot g(t-\tau) + b(t) \ ,
|
|---|
| 161 | \end{equation}
|
|---|
| 162 |
|
|---|
| 163 | where $b(t)$ is the time dependent noise distribution. For small time shifts $\tau$ the time dependence can be linearized by the use of a Taylor expansion:
|
|---|
| 164 |
|
|---|
| 165 | \begin{equation} \label{shape_taylor_approx}
|
|---|
| 166 | y(t)=E \cdot g(t) - E\tau \cdot \dot{g}(t) + b(t) \ ,
|
|---|
| 167 | \end{equation}
|
|---|
| 168 |
|
|---|
| 169 | where $\dot{g}(t)$ is the time derivative of the signal shape. Discrete
|
|---|
| 170 | measurements $y_i$ of the signal at times $t_i \ (i=1,...,n)$ have the form:
|
|---|
| 171 |
|
|---|
| 172 | \begin{equation}
|
|---|
| 173 | y_i=E \cdot g_i- E\tau \cdot \dot{g}_i +b_i \ .
|
|---|
| 174 | \end{equation}
|
|---|
| 175 |
|
|---|
| 176 | The correlation of the noise contributions at times $t_i$ and $t_j$ is expressed in the noise autocorrelation matrix $\boldsymbol{B}$:
|
|---|
| 177 |
|
|---|
| 178 | \begin{equation}
|
|---|
| 179 | \boldsymbol{B_{ij}} = \langle b_i b_j \rangle - \langle b_i \rangle \langle b_j
|
|---|
| 180 | \rangle \ .
|
|---|
| 181 | \end{equation}
|
|---|
| 182 | %\equiv \langle b_i b_j \rangle with $\langle b_i \rangle = 0$.
|
|---|
| 183 |
|
|---|
| 184 | The signal amplitude, $E$, and the product of amplitude and time shift, $E \tau$, can be estimated from the given set of
|
|---|
| 185 | measurements $\boldsymbol{y} = (y_1, ... ,y_n)$ by minimizing:
|
|---|
| 186 |
|
|---|
| 187 | \begin{eqnarray}
|
|---|
| 188 | \chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_i) \\
|
|---|
| 189 | &=& (\boldsymbol{y} - E
|
|---|
| 190 | \boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ ,
|
|---|
| 191 | \end{eqnarray}
|
|---|
| 192 |
|
|---|
| 193 | where the last expression is matricial. The minimum is obtained for:
|
|---|
| 194 |
|
|---|
| 195 | \begin{equation}
|
|---|
| 196 | \frac{\partial \chi^2(E, E\tau)}{\partial E} = 0 \qquad \text{and} \qquad \frac{\partial \chi^2(E, E\tau)}{\partial(E\tau)} = 0 \ .
|
|---|
| 197 | \end{equation}
|
|---|
| 198 |
|
|---|
| 199 | This leads to the following two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude and time offset $\overline{E\tau}$:
|
|---|
| 200 |
|
|---|
| 201 | \begin{eqnarray}
|
|---|
| 202 | 0&=&-\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau}
|
|---|
| 203 | \\
|
|---|
| 204 | 0&=&-\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau} \ .
|
|---|
| 205 | \end{eqnarray}
|
|---|
| 206 |
|
|---|
| 207 | Solving these equations one gets the solutions:
|
|---|
| 208 |
|
|---|
| 209 | \begin{equation}
|
|---|
| 210 | \overline{E}= \boldsymbol{w}_{\text{amp}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{amp}} = \frac{ (\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \boldsymbol{g} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ ,
|
|---|
| 211 | \end{equation}
|
|---|
| 212 |
|
|---|
| 213 | \begin{equation}
|
|---|
| 214 | \overline{E\tau}= \boldsymbol{w}_{\text{time}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{time}} = \frac{ ({\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} {\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ .
|
|---|
| 215 | \end{equation}
|
|---|
| 216 |
|
|---|
| 217 |
|
|---|
| 218 | Thus $\overline{E}$ and $\overline{E\tau}$ are given by a weighted sum of the discrete measurements $y_i$ with the digital filtering weights for the amplitude, $w_{\text{amp},i}$, and time shift, $w_{\text{time},i}$.
|
|---|
| 219 |
|
|---|
| 220 | Because of the truncation of the Taylor series in equation (\ref{shape_taylor_approx}) the above results are only valid for vanishing time offsets $\tau$. For non-zero time offsets one has to iterate the problem using the time shifted signal shape $g(t-\tau)$.
|
|---|
| 221 |
|
|---|
| 222 | The covariance matrix $\boldsymbol{V}$ of $\overline{E}$ and $\overline{E\tau}$ is given by:
|
|---|
| 223 |
|
|---|
| 224 | \begin{equation}
|
|---|
| 225 | \boldsymbol{V}^{-1}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in [E, E\tau] \ .
|
|---|
| 226 | \end{equation}
|
|---|
| 227 |
|
|---|
| 228 | The expected contribution of the noise to the estimated amplitude, $\sigma_E$, is:
|
|---|
| 229 |
|
|---|
| 230 | \begin{equation}\label{of_noise}
|
|---|
| 231 | \sigma_E^2=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
|
|---|
| 232 | \end{equation}
|
|---|
| 233 |
|
|---|
| 234 | The expected contribution of the noise to the estimated timing ,$\sigma_{\tau}$, is:
|
|---|
| 235 |
|
|---|
| 236 | \begin{equation}\label{of_noise_time}
|
|---|
| 237 | E^2 \cdot \sigma_{\tau}^2=\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
|
|---|
| 238 | \end{equation}
|
|---|
| 239 |
|
|---|
| 240 | For the MAGIC signals, as implemented in the MC simulations, a pedestal RMS of a single FADC slice of 4 FADC counts introduces an error in the reconstructed signal and time of:
|
|---|
| 241 |
|
|---|
| 242 | \begin{equation}\label{of_noise}
|
|---|
| 243 | \sigma_E \approx 8.3 \ \mathrm{FADC\ counts} \qquad \sigma_{\tau} \approx \frac{6.5\ \Delta T_{\mathrm{FADC}}}{E\ /\ \mathrm{FADC\ counts}} \ ,
|
|---|
| 244 | \end{equation}
|
|---|
| 245 |
|
|---|
| 246 | where $\Delta T_{\mathrm{FADC}} = 3.33$ ns is the sampling intervall of the MAGIC FADCs.
|
|---|
| 247 |
|
|---|
| 248 | In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed:
|
|---|
| 249 |
|
|---|
| 250 | \begin{equation}
|
|---|
| 251 | e_{i_0}=\sum_{i=i_0}^{i=i_0+5} w_{\mathrm{amp}(t_i)}y(t_{i+i_0}) \qquad e\tau_{i_0}=\sum_{i=i_0}^{i=i_0+5} w(t_i)_{\mathrm{time}(t_i)}y(t_{i+i_0})
|
|---|
| 252 | \end{equation}
|
|---|
| 253 |
|
|---|
| 254 | for all possible signal start samples $i_0$. Let $i_0^*$ be the signal start sample with the largest $e_{i_0}$. Then in a seconst step the timing offset $\tau$ is calculated:
|
|---|
| 255 |
|
|---|
| 256 | \begin{equation}
|
|---|
| 257 | \tau=\frac{e\tau_{i_0^*}}{e_{i_0^*}}
|
|---|
| 258 | \end{equation}
|
|---|
| 259 |
|
|---|
| 260 | and the weigths iterated:
|
|---|
| 261 |
|
|---|
| 262 | \begin{equation}
|
|---|
| 263 | E_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w_{\mathrm{amp}(t_i - \tau)}y(t_{i+i_0^*}) \qquad E \tau_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w(t_i - \tau)_{\mathrm{time}(t_i)}y(t_{i+i_0^*}) \ .
|
|---|
| 264 | \end{equation}
|
|---|
| 265 |
|
|---|
| 266 | The reconstructed signal is then taken to be $E_{i_0^*}$ and the reconstructed arrival time $t_{\text{arrival}}$ is
|
|---|
| 267 |
|
|---|
| 268 | \begin{equation}
|
|---|
| 269 | t_{\text{arrival}} = i_0^* + \tau_{i_0^*} + \tau \ .
|
|---|
| 270 | \end{equation}
|
|---|
| 271 |
|
|---|
| 272 |
|
|---|
| 273 |
|
|---|
| 274 | % This does not apply for MAGIC as the LONs are giving always a correlated noise (in addition to the artificial shaping)
|
|---|
| 275 |
|
|---|
| 276 | %In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is:
|
|---|
| 277 |
|
|---|
| 278 | %\begin{equation}
|
|---|
| 279 | %\boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ ,
|
|---|
| 280 | %\end{equation}
|
|---|
| 281 |
|
|---|
| 282 | %where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes:
|
|---|
| 283 |
|
|---|
| 284 |
|
|---|
| 285 | %\begin{equation}
|
|---|
| 286 | %\frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ .
|
|---|
| 287 | %\end{equation}
|
|---|
| 288 |
|
|---|
| 289 |
|
|---|
| 290 |
|
|---|
| 291 | \ldots {\it Hendrik ... }
|
|---|
| 292 |
|
|---|
| 293 | The following free adjustable parameters have to be set from outside:
|
|---|
| 294 |
|
|---|
| 295 | \begin{description}
|
|---|
| 296 | \item[Weights File:\xspace]
|
|---|
| 297 | \item[Window Sizes:\xspace]
|
|---|
| 298 | \item[Binning Resolution:\xspace]
|
|---|
| 299 | \end{description}
|
|---|
| 300 |
|
|---|
| 301 | \subsubsection{Real fit to the expected pulse shape }
|
|---|
| 302 |
|
|---|
| 303 | This extractor is not yet implemented as MARS-class...
|
|---|
| 304 | \par
|
|---|
| 305 | It fit the pulse shape to a Landau convoluted with a Gaussian using the following
|
|---|
| 306 | parameters:...
|
|---|
| 307 |
|
|---|
| 308 | \ldots {\it Hendrik, Wolfgang ... }
|
|---|
| 309 |
|
|---|
| 310 |
|
|---|
| 311 | \subsection{Used Extractors for this Analysis}
|
|---|
| 312 |
|
|---|
| 313 | We propose to test the following parameterized extractors:
|
|---|
| 314 |
|
|---|
| 315 | \begin{description}
|
|---|
| 316 | \item[MExtractFixedWindow]: with the following parameters, if {\textit{maxbin}} defines the
|
|---|
| 317 | mean position of the High-Gain FADC slice carrying the pulse maximum:
|
|---|
| 318 | \begin{enumerate}
|
|---|
| 319 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}+0.5,{\textit{maxbin}}+3.5);
|
|---|
| 320 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
|---|
| 321 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
|---|
| 322 | \item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+4,{\textit{maxbin}}-1.5,{\textit{maxbin}}+5.5);
|
|---|
| 323 | \item SetRange({\textit{maxbin}}-5,{\textit{maxbin}}+8,{\textit{maxbin}}-1.5,{\textit{maxbin}}+7.5);
|
|---|
| 324 | \suspend{enumerate}
|
|---|
| 325 | \item[MExtractFixedWindowSpline]: with the following parameters, if {\textit{maxbin}} defines the
|
|---|
| 326 | mean position of the High-Gain FADC slice carrying the pulse maximum:
|
|---|
| 327 | \resume{enumerate}
|
|---|
| 328 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}+0.5,{\textit{maxbin}}+3.5);
|
|---|
| 329 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
|---|
| 330 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
|---|
| 331 | \item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+4,{\textit{maxbin}}-1.5,{\textit{maxbin}}+5.5);
|
|---|
| 332 | \item SetRange({\textit{maxbin}}-5,{\textit{maxbin}}+8,{\textit{maxbin}}-1.5,{\textit{maxbin}}+7.5);
|
|---|
| 333 | \suspend{enumerate}
|
|---|
| 334 | \item[MExtractFixedWindowPeakSearch]: with the following parameters: \\
|
|---|
| 335 | SetRange(0,18,2,14); and:
|
|---|
| 336 | \resume{enumerate}
|
|---|
| 337 | \item SetWindows(2,2,2);
|
|---|
| 338 | \item SetWindows(4,4,2);
|
|---|
| 339 | \item SetWindows(6,6,4);
|
|---|
| 340 | \item SetWindows(4,6,4);
|
|---|
| 341 | \item SetWindows(8,8,4);
|
|---|
| 342 | \item SetWindows(14,10,4);
|
|---|
| 343 | \suspend{enumerate}
|
|---|
| 344 | \item[MExtractTimeAndChargeSlidingWindow]: with the following parameters: \\
|
|---|
| 345 | SetRange(0,18,2,14); and:
|
|---|
| 346 | \resume{enumerate}
|
|---|
| 347 | \item SetWindowSize(2,2);
|
|---|
| 348 | \item SetWindowSize(4,4);
|
|---|
| 349 | \item SetWindowSize(6,6);
|
|---|
| 350 | \item SetWindowSize(4,6);
|
|---|
| 351 | \item SetWindowSize(8,8);
|
|---|
| 352 | \item SetWindowSize(14,10);
|
|---|
| 353 | \suspend{enumerate}
|
|---|
| 354 | \item[MExtractTimeAndChargeSpline]: with the following parameters:\\
|
|---|
| 355 | SetChargeType(MExtractTimeAndChargeSpline::kIntegral); \\
|
|---|
| 356 | SetRange(0,18,2,14); \\
|
|---|
| 357 | and:
|
|---|
| 358 |
|
|---|
| 359 | \resume{enumerate}
|
|---|
| 360 | \item SetRiseTime(1.5); SetFallTime(4.5);
|
|---|
| 361 | \item SetRiseTime(0.5); SetFallTime(2.5);
|
|---|
| 362 | \item SetRiseTime(0.5); SetFallTime(1.5);
|
|---|
| 363 | \item SetRiseTime(0.5); SetFallTime(0.5);
|
|---|
| 364 | \suspend{enumerate}
|
|---|
| 365 | and:
|
|---|
| 366 | \resume{enumerate}
|
|---|
| 367 | \item SetChargeType(MExtractTimeAndChargeSpline::kAmplitude); \\
|
|---|
| 368 | SetRange(0,10,4,11); and:
|
|---|
| 369 | \suspend{enumerate}
|
|---|
| 370 | \item[MExtractTimeAndChargeDigitalFilter]: with the following parameters:
|
|---|
| 371 | \resume{enumerate}
|
|---|
| 372 | \item SetWeightsFile(``cosmic\_weights6.dat'');
|
|---|
| 373 | \item SetWeightsFile(``cosmic\_weights4.dat'');
|
|---|
| 374 | \item SetWeightsFile(``cosmic\_weights\_logain6.dat'');
|
|---|
| 375 | \item SetWeightsFile(``cosmic\_weights\_logain4.dat'');
|
|---|
| 376 | \item SetWeightsFile(``calibration\_weights\_UV6.dat'');
|
|---|
| 377 | \item SetWeightsFile(``calibration\_weights\_UV\_logain6.dat'');
|
|---|
| 378 | \suspend{enumerate}
|
|---|
| 379 | \item[``Real Fit'']: (not yet implemented, one try)
|
|---|
| 380 | \resume{enumerate}
|
|---|
| 381 | \item Real Fit
|
|---|
| 382 | \end{enumerate}
|
|---|
| 383 | \end{description}
|
|---|
| 384 |
|
|---|
| 385 |
|
|---|
| 386 | References: \cite{OF77,OF94}.
|
|---|
| 387 |
|
|---|
| 388 |
|
|---|
| 389 | %%% Local Variables:
|
|---|
| 390 | %%% mode: latex
|
|---|
| 391 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 392 | %%% TeX-master: "Algorithms"
|
|---|
| 393 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 394 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 395 | %%% End:
|
|---|