source: trunk/MagicSoft/TDAS-Extractor/Algorithms.tex@ 5913

Last change on this file since 5913 was 5913, checked in by gaug, 20 years ago
*** empty log message ***
File size: 37.8 KB
Line 
1\section{Signal Reconstruction Algorithms \label{sec:algorithms}}
2
3{\it Missing coding:
4\begin{itemize}
5\item Real fit to the expected pulse shape \ldots Hendrik, Wolfgang ???
6\end{itemize}
7}
8
9\subsection{Implementation of Signal Extractors in MARS}
10
11All signal extractor classes are stored in the MARS-directory {\textit{\bf msignal/}}.
12There, the base classes {\textit{\bf MExtractor}}, {\textit{\bf MExtractTime}}, {\textit{\bf MExtractTimeAndCharge}} and
13all individual extractors can be found. Figure~\ref{fig:extractorclasses} gives a sketch of the
14inheritances of each class and what each class calculates.
15
16\begin{figure}[htp]
17\includegraphics[width=0.99\linewidth]{ExtractorClasses.eps}
18\caption{Sketch of the inheritances of three examplary MARS signal extractor classes: MExtractFixedWindow, MExtractTimeFastSpline and MExtractTimeAndChargeDigitalFilter}
19\label{fig:extractorclasses}
20\end{figure}
21
22The following base classes for the extractor tasks are used:
23\begin{description}
24\item[MExtractor:\xspace] This class provides the basic data members equal for all extractors which are:
25 \begin{enumerate}
26 \item Global extraction ranges, parameterized by the variables
27 {\textit{\bf fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast}} and the function {\textit{\bf SetRange()}}.
28 The ranges always {\textit{\bf include}} the edge slices.
29 \item An internal variable {\textit{\bf fHiLoLast}} regulating the overlap of the desired high-gain
30 extraction range into the low-gain array.
31 \item The maximum possible FADC value, before the slice is declared as saturated, parameterized
32 by the variable {\textit{\bf fSaturationLimit}} (default:\,254).
33 \item The typical delay between high-gain and low-gain slices, expressed in FADC slices and parameterized
34 by the variable {\textit{\bf fOffsetLoGain}} (default:\,1.51)
35 \item Pointers to the used storage containers {\textit{\bf MRawEvtData, MRawRunHeader, MPedestalCam}}
36 and~{\textit{\bf MExtractedSignalCam}}, parameterized by the variables
37 {\textit{\bf fRawEvt, fRunHeader, fPedestals}} and~{\textit{\bf fSignals}}.
38 \item Names of the used storage containers to be searched for in the parameter list, parameterized
39 by the variables {\textit{\bf fNamePedestalCam}} and~{\textit{\bf fNameSignalCam}} (default: ``MPedestalCam''
40 and~''MExtractedSignalCam'').
41 \item The equivalent number of FADC samples, used for the calculation of the pedestal RMS and then the
42 number of photo-electrons with the F-Factor method (see eq.~\ref{eq:rmssubtraction} and
43 section~\ref{sec:photo-electrons}). This number is parameterized by the variables
44 {\textit{\bf fNumHiGainSamples}} and~{\textit{\bf fNumLoGainSamples}}.
45 \end{enumerate}
46
47 {\textit {\bf MExtractor}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not overwritten.
48 It uses the following (virtual) functions, to be overwritten by the derived extractor class:
49
50 \begin{enumerate}
51 \item void {\textit {\bf FindSignalHiGain}}(Byte\_t* firstused, Byte\_t* logain, Float\_t\& sum, Byte\_t\& sat) const
52 \item void {\textit {\bf FindSignalLoGain}}(Byte\_t* firstused, Float\_t\& sum, Byte\_t\& sat) const
53 \end{enumerate}
54
55 where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
56 the pointer ``logain'' points to the beginning of the ``low-gain'' FADC slices array (to be used for
57 pulses reaching into the low-gain array) and the variables ``sum'' and ``sat'' get filled with the
58 extracted signal and the number of saturating FADC slices, respectively.
59 \par
60 The pedestals get subtracted automatically {\textit {\bf after}} execution of these two functions.
61
62\item[MExtractTime:\xspace] This class provides - additionally to those already declared in {\textit{\bf MExtractor}} -
63 the basic data members equal for all time extractors which are:
64 \begin{enumerate}
65 \item Pointer to the used storage container {\textit{\bf MArrivalTimeCam}}
66 parameterized by the variables
67 {\textit{\bf fArrTime}}.
68 \item The name of the used ``MArrivalTimeCam''-container to be searched for in the parameter list,
69 parameterized by the variables {\textit{\bf fNameTimeCam}} (default: ``MArrivalTimeCam'' ).
70 \end{enumerate}
71
72 {\textit {\bf MExtractTime}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not
73 overwritten.
74 It uses the following (virtual) functions, to be overwritten by the derived extractor class:
75
76 \begin{enumerate}
77 \item void {\textit {\bf FindTimeHiGain}}(Byte\_t* firstused, Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat, const MPedestlPix \&ped) const
78 \item void {\textit {\bf FindTimeLoGain}}(Byte\_t* firstused, Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat, const MPedestalPix \&ped) const
79 \end{enumerate}
80
81 where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
82 and the variables ``time'', ``dtime'' and ``sat'' get filled with the
83 extracted arrival time, its error and the number of saturating FADC slices, respectively.
84 \par
85 The pedestals can be used for the arrival time extraction via the reference ``ped''.
86
87\item[MExtractTimeAndCharge:\xspace] This class provides - additionally to those already declared in
88 {\textit{\bf MExtractor}} and {\textit{\bf MExtractTime}} -
89 the basic data members equal for all time and charge extractors which are:
90 \begin{enumerate}
91 \item The actual extraction window sizes, parameterized by the variables
92 {\textit{\bf fWindowSizeHiGain}} and {\textit{\bf fWindowSizeLoGain}}.
93 \item The shift of the low-gain extraction range start w.r.t. to the found high-gain arrival
94 time, parameterized by the variable {\textit{\bf fLoGainStartShift}} (default: -2.8)
95 \end{enumerate}
96
97 {\textit {\bf MExtractTimeAndCharge}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not
98 overwritten.
99 It uses the following (virtual) functions, to be overwritten by the derived extractor class:
100
101 \begin{enumerate}
102 \item void {\textit {\bf FindTimeAndChargeHiGain}}(Byte\_t* firstused, Byte\_t* logain, Float\_t\& sum, Float\_t\& dsum,
103 Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat,
104 const MPedestlPix \&ped, const Bool\_t abflag) const
105 \item void {\textit {\bf FindTimeAndChargeLoGain}}(Byte\_t* firstused, Float\_t\& sum, Float\_t\& dsum,
106 Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat,
107 const MPedestalPix \&ped, const Bool\_t abflag) const
108 \end{enumerate}
109
110 where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
111 the pointer ``logain'' point to the beginning of the low-gain FADC slices array (to be used for
112 pulses reaching into the ``low-gain'' array),
113 the variables ``sum'', ``dsum'' get filled with the
114 extracted signal and its error. The variables ``time'', ``dtime'' and ``sat'' get filled with the
115 extracted arrival time, its error and the number of saturating FADC slices, respectively.
116 \par
117 The pedestals can be used for the extraction via the reference ``ped'', also the AB-flag is given
118 for AB-clock noise correction.
119\end{description}
120
121
122\subsection{Pure Signal Extractors}
123
124The pure signal extractors have in common that they reconstruct only the
125charge, but not the arrival time. All treated extractors here derive from the MARS-base
126class {\textit{\bf MExtractor}} which provides the following facilities:
127
128\begin{itemize}
129\item The global extraction limits can be set from outside
130\item FADC saturation is kept track of
131\end{itemize}
132
133The following adjustable parameters have to be set from outside:
134\begin{description}
135\item[Global extraction limits:\xspace] Limits in between which the extractor is allowed
136to extract the signal, for high gain and low gain, respectively.
137\end{description}
138
139As the pulses jitter by about one FADC slice,
140not every pulse lies exactly within the optimal limits, especially if one takes small
141extraction windows.
142Moreover, the readout position with respect to the trigger position has changed a couple
143of times during last year, therefore a very careful adjustment of the extraction limits
144is mandatory before using these extractors.
145
146\subsubsection{Fixed Window}
147
148This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindow}}.
149It simply adds the FADC slice contents in the assigned ranges.
150As it does not correct for the clock-noise, only an even number of samples is allowed.
151Figure~\ref{fig:fixedwindowsketch} gives a sketch of the used extraction ranges for this
152paper and two typical calibration pulses.
153
154\begin{figure}[htp]
155 \includegraphics[width=0.49\linewidth]{MExtractFixedWindow_5Led_UV.eps}
156 \includegraphics[width=0.49\linewidth]{MExtractFixedWindow_23Led_Blue.eps}
157\caption[Sketch extraction ranges MExtractFixedWindow]{%
158Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindow}}
159for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
160The pulse would be shifted half a slice to the right for an outer pixel. }
161\label{fig:fixedwindowsketch}
162\end{figure}
163
164
165\subsubsection{Fixed Window with Integrated Cubic Spline}
166
167This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindowSpline}}. It
168uses a cubic spline algorithm, adapted from \cite{NUMREC} and integrates the
169spline interpolated FADC slice values from a fixed extraction range. The edge slices are counted as half.
170As it does not correct for the clock-noise, only an odd number of samples is allowed.
171Figure~\ref{fig:fixedwindowsplinesketch} gives a sketch of the used extraction ranges for this
172paper and two typical calibration pulses.
173
174\begin{figure}[htp]
175 \includegraphics[width=0.49\linewidth]{MExtractFixedWindowSpline_5Led_UV.eps}
176 \includegraphics[width=0.49\linewidth]{MExtractFixedWindowSpline_23Led_Blue.eps}
177\caption[Sketch extraction ranges MExtractFixedWindowSpline]{%
178Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindowSpline}}
179for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
180The pulse would be shifted half a slice to the right for an outer pixel. }
181\label{fig:fixedwindowsplinesketch}
182\end{figure}
183
184\subsubsection{Fixed Window with Global Peak Search}
185
186This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindowPeakSearch}}.
187The basic idea of this extractor is to correct for coherent movements in arrival time for all pixels,
188as e.g. caused by the trigger jitter.
189In a first loop, it fixes a reference point defined as the highest sum of
190consecutive non-saturating FADC slices in a (smaller) peak-search window.
191\par
192In a second loop over the pixels,
193it adds the FADC contents starting from a pre-defined offset from the obtained peak-search window
194over an extraction window of a pre-defined window size.
195It loops twice over all pixels in every event, because it has to find the reference point, first.
196As it does not correct for the clock-noise, only an even number of samples is allowed.
197For a high intensity calibration run causing high-gain saturation in the whole camera, this
198extractor apparently fails since only dead pixels which cannot produced a saturated signal, are taken into account
199in the peak search. For this special case, we modified {\textit{\bf MExtractFixedWindowPeakSearch}}
200such to define the peak search window as the one starting from the mean position of the first saturating slice.
201\par
202The following adjustable parameters have to be set from outside:
203\begin{description}
204\item[Peak Search Window:\xspace] Defines the ``sliding window'' size within which the peaking sum is
205searched for (default: 4 slices)
206\item[Offset from Window:\xspace] Defines the offset of the start of the extraction window w.r.t. the
207starting point of the obtained peak search window (default: 1 slice)
208\item[Low-Gain Peak shift:\xspace] Defines the shift in the low-gain with respect to the peak found
209in the high-gain (default: 1 slice)
210\end{description}
211
212Figure~\ref{fig:fixedwindowpeaksearchsketch} gives a sketch of the possible peak-search and extraction
213window positions in two typical calibration pulses.
214
215\begin{figure}[htp]
216 \includegraphics[width=0.49\linewidth]{MExtractFixedWindowPeakSearch_5Led_UV.eps}
217 \includegraphics[width=0.49\linewidth]{MExtractFixedWindowPeakSearch_23Led_Blue.eps}
218\caption[Sketch extraction ranges MExtractFixedWindowPeakSearch]{%
219Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindowPeakSearch}}
220for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
221The pulse would be shifted half a slice to the right for an outer pixel. }
222\label{fig:fixedwindowpeaksearchsketch}
223\end{figure}
224
225\subsection{Combined Extractors}
226
227The combined extractors have in common that they reconstruct the arrival time and
228the charge at the same time and for the same pulse.
229All treated combined extractors here derive from the MARS-base
230class {\textit{\bf MExtractTimeAndCharge}} which itself derives from MExtractor and MExtractTime.
231It provides the following facilities:
232
233\begin{itemize}
234\item Only one loop over all pixels is performed.
235\item The individual FADC slice values get the clock-noise-corrected pedestals immediately subtracted.
236\item The low-gain extraction range is adapted dynamically, based on the computed arrival time
237 from the high-gain samples.
238\item Extracted times from the low-gain samples get corrected for the intrinsic time delay of the low-gain
239 pulse.
240\item The global extraction limits can be set from outside.
241\item FADC saturation is kept track of.
242\end{itemize}
243
244The following adjustable parameters have to be set from outside, additionally to those declared in the
245base classes MExtractor and MExtractTime:
246
247\begin{description}
248\item[Global extraction limits:\xspace] Limits in between which the extractor is allowed
249to search. They are fixed by the extractor for the high-gain, but re-adjusted for
250every event in the low-gain, depending on the arrival time found in the low-gain.
251However, the dynamically adjusted window is not allowed to pass beyond the global
252limits.
253\item[Low-gain start shift:\xspace] Global shift between the computed high-gain arrival
254time and the start of the low-gain extraction limit (corrected for the intrinsic time offset).
255This variable tells where the extractor is allowed to start searching for the low-gain signal
256if the high-gain arrival time is known. It avoids that the extractor gets confused by possible high-gain
257signals leaking into the ``low-gain'' region (default: -2.8).
258\end{description}
259
260\subsubsection{Sliding Window with Amplitude-Weighted Time}
261
262This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeSlidingWindow}}.
263It extracts the signal from a sliding window of an adjustable size, for high-gain and low-gain
264individually (default: 6 and 6) The signal is the one which maximizes the summed
265(clock-noise and pedestal-corrected) FADC slice contents.
266\par
267The amplitude-weighted arrival time is calculated from the window with
268the highest integral using the following formula:
269
270\begin{equation}
271 t = \frac{\sum_{i=0}^{windowsize} s_i \cdot i}{\sum_{i=0}^{windowsize} i}
272\end{equation}
273where $i$ denotes the FADC slice index, starting from the beginning of the extraction
274window and running over the window and $s_i$ the clock-noise and
275pedestal-corrected FADC slice contents at slice position $i$.
276\par
277The following free adjustable parameters have to be set from outside:
278\begin{description}
279\item[Window sizes:\xspace] Independently for high-gain and low-gain (default: 6,6)
280\end{description}
281
282\begin{figure}[htp]
283 \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSlidingWindow_5Led_UV.eps}
284 \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSlidingWindow_23Led_Blue.eps}
285\caption[Sketch calculated arrival times MExtractTimeAndChargeSlidingWindow]{%
286Sketch of the calculated arrival times for the extractor {\textit{MExtractTimeAndChargeSlidingWindow}}
287for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
288The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
289The pulse would be shifted half a slice to the right for an outer pixels. }
290\label{fig:slidingwindowsketch}
291\end{figure}
292
293\subsubsection{Cubic Spline with Sliding Window or Amplitude Extraction}
294
295This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeSpline}}.
296It interpolates the FADC contents using a cubic spline algorithm, adapted from \cite{NUMREC}.
297The following free adjustable parameters have to be set from outside:
298
299\begin{description}
300\item[Charge Extraction Type:\xspace] The amplitude of the spline maximum can be chosen while the position
301of the maximum is returned as arrival time. This type is fast. \\
302Otherwise, the integrated spline between maximum position minus rise time (default: 1.5 slices)
303and maximum position plus fall time (default: 4.5 slices) is taken as signal and the position of the
304half maximum is returned as arrival time (default).
305The low-gain signal stretches the rise and fall time by a stretch factor (default: 1.5). This type
306is slower, but more precise. The charge integration resolution is 0.1 FADC slices.
307\item[Rise Time and Fall Time:\xspace] Can be adjusted for the integration charge extraction type.
308\item[Resolution:\xspace] Defined as the maximum allowed difference between the calculated half maximum value and
309the computed spline value at the arrival time position. Can be adjusted for the half-maximum time extraction
310type.
311\item[LoGainStretch:\xspace] Can be adjusted to account for the bigger rise and fall time in the
312low-gain as compared to the high gain pulses (default: 1.5)
313\end{description}
314
315\begin{figure}[htp]
316 \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSpline_5Led_UV.eps}
317 \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSpline_23Led_Blue.eps}
318\caption[Sketch calculated arrival times MExtractTimeAndChargeSpline]{%
319Sketch of the calculated arrival times for the extractor {\textit{MExtractTimeAndChargeSpline}}
320for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
321The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
322The pulse would be shifted half a slice to the right for an outer pixels. }
323\label{fig:splinesketch}
324\end{figure}
325
326\subsubsection{Digital Filter}
327
328This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeDigitalFilter}}.
329
330
331The goal of the digital filtering method \cite{OF94,OF77} is to optimally reconstruct the amplitude and time origin of a signal with a known signal shape from discrete measurements of the signal. Thereby the noise contribution to the amplitude reconstruction is minimized.
332
333For the digital filtering method two assumptions have to be made:
334
335\begin{itemize}
336\item{The normalized signal shape has to be independent of the signal amplitude.}
337\item{The noise properties have to be independent of the signal amplitude.}
338\item{The noise auto-correlation matrix does not change its form significantly with time.}
339\end{itemize}
340
341Let $g(t)$ be the normalized signal shape, $E$ the signal amplitude and $\tau$ the time shift of the physical signal from the predicted signal shape. Then the time dependence of the signal, $y(t)$, is given by:
342
343\begin{equation}
344y(t)=E \cdot g(t-\tau) + b(t) \ ,
345\end{equation}
346
347where $b(t)$ is the time dependent noise distribution. For small time shifts $\tau$ (usually smaller than
348one FADC slice width),
349the time dependence can be linearized by the use of a Taylor expansion:
350
351\begin{equation} \label{shape_taylor_approx}
352y(t)=E \cdot g(t) - E\tau \cdot \dot{g}(t) + b(t) \ ,
353\end{equation}
354
355where $\dot{g}(t)$ is the time derivative of the signal shape. Discrete
356measurements $y_i$ of the signal at times $t_i \ (i=1,...,n)$ have the form:
357
358\begin{equation}
359y_i=E \cdot g_i- E\tau \cdot \dot{g}_i +b_i \ .
360\end{equation}
361
362The correlation of the noise contributions at times $t_i$ and $t_j$ is expressed in the noise autocorrelation matrix $\boldsymbol{B}$:
363
364\begin{equation}
365\boldsymbol{B_{ij}} = \langle b_i b_j \rangle - \langle b_i \rangle \langle b_j
366\rangle \ .
367\label{eq:autocorr}
368\end{equation}
369%\equiv \langle b_i b_j \rangle with $\langle b_i \rangle = 0$.
370
371The signal amplitude, $E$, and the product of amplitude and time shift, $E \tau$, can be estimated from the given set of
372measurements $\boldsymbol{y} = (y_1, ... ,y_n)$ by minimizing:
373
374\begin{eqnarray}
375\chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_j) \\
376&=& (\boldsymbol{y} - E
377\boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ ,
378\end{eqnarray}
379
380where the last expression is matricial. The minimum is obtained for:
381
382\begin{equation}
383\frac{\partial \chi^2(E, E\tau)}{\partial E} = 0 \qquad \text{and} \qquad \frac{\partial \chi^2(E, E\tau)}{\partial(E\tau)} = 0 \ .
384\end{equation}
385
386Taking into account that $\boldsymbol{B}$ is a symmetric matrix, this leads to the following
387two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude
388and time offset $\overline{E\tau}$:
389
390\begin{eqnarray}
3910&=&-\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau}
392\\
3930&=&-\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau} \ .
394\end{eqnarray}
395
396Solving these equations one gets the solutions:
397
398\begin{equation}
399\overline{E}= \boldsymbol{w}_{\text{amp}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{amp}} = \frac{ (\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \boldsymbol{g} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ ,
400\end{equation}
401
402\begin{equation}
403\overline{E\tau}= \boldsymbol{w}_{\text{time}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{time}} = \frac{ ({\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} {\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ .
404\end{equation}
405
406
407Thus $\overline{E}$ and $\overline{E\tau}$ are given by a weighted sum of the discrete measurements $y_i$
408with the digital filtering weights for the amplitude, $w_{\text{amp},i}$, and time shift, $w_{\text{time},i}$.
409
410Because of the truncation of the Taylor series in equation (\ref{shape_taylor_approx}) the above results are
411only valid for vanishing time offsets $\tau$. For non-zero time offsets one has to iterate the problem using
412the time shifted signal shape $g(t-\tau)$.
413
414The covariance matrix $\boldsymbol{V}$ of $\overline{E}$ and $\overline{E\tau}$ is given by:
415
416\begin{equation}
417\left(\boldsymbol{V}^{-1}\right)_{i,j}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in \{E, E\tau\} \ .
418\end{equation}
419
420The expected contribution of the noise to the estimated amplitude, $\sigma_E$, is:
421
422\begin{equation}\label{of_noise}
423\sigma_E^2=\boldsymbol{V}_{E,E}=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
424\end{equation}
425
426The expected contribution of the noise to the estimated timing, $\sigma_{\tau}$, is:
427
428\begin{equation}\label{of_noise_time}
429E^2 \cdot \sigma_{\tau}^2=\boldsymbol{V}_{E\tau,E\tau}=\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
430\end{equation}
431
432For the MAGIC signals, as implemented in the MC simulations, a pedestal RMS of a single FADC slice of 4 FADC counts introduces an error in the reconstructed signal and time of:
433
434\begin{equation}\label{of_noise}
435\sigma_E \approx 8.3 \ \mathrm{FADC\ counts} \qquad \sigma_{\tau} \approx \frac{6.5\ \Delta T_{\mathrm{FADC}}}{E\ /\ \mathrm{FADC\ counts}} \ ,
436\end{equation}
437
438where $\Delta T_{\mathrm{FADC}} = 3.33$ ns is the sampling interval of the MAGIC FADCs.
439
440
441For an IACT there are two types of background noise. On the one hand there is the constantly present electronics noise, on the other hand the light of the night sky introduces a sizeable background noise to the measurement of Cherenkov photons from air showers.
442
443The electronics noise is largely white, uncorrelated in time. The noise from the night sky background photons is the superposition of the detector response to single photo electrons arriving randomly distributed in time. Figure \ref{fig:noise_autocorr_AB_36038_TDAS} shows the noise autocorrelation matrix for an open camera. The large noise autocorrelation in time of the current FADC system is due to the pulse shaping with a shaping constant of 6 ns.
444
445In general the amplitude and timing weights, $\boldsymbol{w}_{\text{amp}}$ and $\boldsymbol{w}_{\text{time}}$, depend on the pulse shape, the derivative of the pulse shape and the noise autocorrelation. In the high gain samples the correlated night sky background noise dominates over the white electronics noise. Thus different noise levels just cause the noise autocorrelation matrix $\boldsymbol{B}$ to change by a factor, which cancels out in the weights calculation. Thus in the high gain the weights are to a very good approximation independent of the night sky background noise level.
446
447Contrary to that in the low gain samples ... .
448
449
450
451\begin{figure}[h!]
452\begin{center}
453\includegraphics[totalheight=7cm]{noise_autocorr_AB_36038_TDAS.eps}
454\end{center}
455\caption[Noise autocorrelation.]{Noise autocorrelation matrix for open camera including the noise due to night sky background fluctuations.} \label{fig:noise_autocorr_AB_36038_TDAS}
456\end{figure}
457
458
459
460Using the average reconstructed pulpo pulse shape, as shown in figure \ref{fig:pulpo_shape_low}, and the
461reconstructed noise autocorrelation matrix from a pedestal run with random triggers, the digital filter
462weights are computed. Figures \ref{fig:w_time_MC_input_TDAS} and \ref{fig:w_amp_MC_input_TDAS} show the
463parameterization of the amplitude and timing weights for the MC pulse shape as a function of the ...
464
465\par
466\ldots {\textit{\bf MISSING END OF SENTENCE }} \ldots
467\par
468
469\begin{figure}[h!]
470\begin{center}
471\includegraphics[totalheight=7cm]{w_time_MC_input_TDAS.eps}
472\end{center}
473\caption[Time weights.]{Time weights $w_{\mathrm{time}}(t_0) \ldots w_{\mathrm{time}}(t_5)$ for a window size of 6 FADC slices for the pulse shape used in the MC simulations. The first weight $w_{\mathrm{time}}(t_0)$ is plotted as a function of the relative time $t_{\text{rel}}$ the trigger and the FADC clock in the range $[-0.5;0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5;1.5[ \ T_{\text{ADC}}$ and so on. A binning resolution of $0.1 T_{\text{ADC}}$ has been chosen.} \label{fig:w_time_MC_input_TDAS}
474\end{figure}
475
476\begin{figure}[h!]
477\begin{center}
478\includegraphics[totalheight=7cm]{w_amp_MC_input_TDAS.eps}
479\end{center}
480\caption[Amplitude weights.]{Amplitude weights $w_{\mathrm{amp}}(t_0) \ldots w_{\mathrm{amp}}(t_5)$ for a window size of 6 FADC slices for the pulse shape used in the MC simulations. The first weight $w_{\mathrm{amp}}(t_0)$ is plotted as a function of the relative time $t_{\text{rel}}$ the trigger and the FADC clock in the range $[-0.5;0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5;1.5[ \ T_{\text{ADC}}$ and so on. A binning resolution of $0.1 T_{\text{ADC}}$ has been chosen.} \label{fig:w_amp_MC_input_TDAS}
481\end{figure}
482
483
484
485In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed using a window of $n$ slices:
486
487\begin{equation}
488e_{i_0}=\sum_{i=i_0}^{i_0+n-1} w_{\mathrm{amp}}(t_i)y(t_{i+i_0}) \qquad (e\tau)_{i_0}=\sum_{i=i_0}^{i_0+n-1} w_{\mathrm{time}}(t_i)y(t_{i+i_0})
489\end{equation}
490
491for all possible signal start slices $i_0$. Let $i_0^*$ be the signal start slice with the largest $e_{i_0}$. Then in a second step the timing offset $\tau$ is calculated:
492
493\begin{equation}
494\tau=\frac{(e\tau)_{i_0^*}}{e_{i_0^*}}
495\end{equation}
496
497and the weights iterated:
498
499\begin{equation}
500E=\sum_{i=i_0^*}^{i_0^*+n-1} w_{\mathrm{amp}}(t_i - \tau)y(t_{i+i_0^*}) \qquad E \theta=\sum_{i=i_0^*}^{i_0^*+n-1} w_{\mathrm{time}}(t_i - \tau)y(t_{i+i_0^*}) \ .
501\end{equation}
502
503The reconstructed signal is then taken to be $E$ and the reconstructed arrival time $t_{\text{arrival}}$ is
504
505\begin{equation}
506t_{\text{arrival}} = i_0^* + \tau + \theta \ .
507\end{equation}
508
509
510
511% This does not apply for MAGIC as the LONs are giving always a correlated noise (in addition to the artificial shaping)
512
513%In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is:
514
515%\begin{equation}
516%\boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ ,
517%\end{equation}
518
519%where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes:
520
521
522%\begin{equation}
523%\frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ .
524%\end{equation}
525
526
527\begin{figure}[h!]
528\begin{center}
529\includegraphics[totalheight=7cm]{amp_sliding.eps}
530\includegraphics[totalheight=7cm]{time_sliding.eps}
531\end{center}
532\caption[Digital filter weights applied.]{Digital filter weights applied to the recorded FADC time slices of
533one calibration pulse. The left plot shows the result of the applied amplitude weights
534$e(t_0)=\sum_{i=0}^{i=n-1} w_{\mathrm{amp}}(t_0+i \cdot T_{\text{ADC}})y(t_0+i \cdot T_{\text{ADC}})$ and
535the right plot shows the result of the applied timing weights
536$e\tau(t_0)=\sum_{i=0}^{i=n-1} w_{\mathrm{time}}(t_0+i \cdot T_{\text{ADC}})y(t_0+i \cdot T_{\text{ADC}})$ .}
537\label{fig:amp_sliding}
538\end{figure}
539
540
541Figure \ref{fig:shape_fit_TDAS} shows the FADC slices of a single MC event together with the result of a full
542fit of the input MC pulse shape to the simulated FADC samples together with the result of the numerical fit
543using the digital filter.
544
545
546\begin{figure}[h!]
547\begin{center}
548\includegraphics[totalheight=7cm]{shape_fit_TDAS.eps}
549\end{center}
550\caption[Shape fit.]{Full fit to the MC pulse shape with the MC input shape and a numerical fit using the
551digital filter.} \label{fig:shape_fit_TDAS}
552\end{figure}
553
554
555\ldots {\it Hendrik ... }
556
557The following free adjustable parameters have to be set from outside:
558
559\begin{description}
560\item[Weights File:\xspace] An ascii-file containing the weights, the binning resolution and
561the window size. Currently, the following weight files have been created:
562\begin{itemize}
563\item "cosmics\_weights.dat'' with a window size of 6 FADC slices
564\item "cosmics\_weights4.dat'' with a window size of 4 FADC slices
565\item "calibration\_weights\_blue.dat'' with a window size of 6 FADC slices
566\item "calibration\_weights\_UV.dat'' with a window size of 6 FADC slices and in the low-gain the
567calibration weigths obtained from blue pulses\footnote{UV-pulses saturating the high-gain are not yet
568available.}.
569\item "cosmics\_weights\_logaintest.dat'' with a window size of 6 FADC slices and swapped high-gain and low-gain
570weights. This file is only used for stability tests.
571\item "cosmics\_weights4\_logaintest.dat'' with a window size of 4 FADC slices and swapped high-gain and low-gain
572weights. This file is only used for stability tests.
573\end{itemize}
574\end{description}
575
576\begin{figure}[htp]
577 \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeDigitalFilter_5Led_UV.eps}
578 \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeDigitalFilter_23Led_Blue.eps}
579\caption[Sketch calculated arrival times MExtractTimeAndChargeDigitalFilter]{%
580Sketch of the calculated arrival times for the extractor {\textit{MExtractTimeAndChargeDigitalFilter}}
581for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
582The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
583The pulse would be shifted half a slice to the right for an outer pixels. }
584\label{fig:dfsketch}
585\end{figure}
586
587\subsubsection{Real Fit to the Expected Pulse Shape }
588
589This extractor is not yet implemented as MARS-class...
590\par
591It fits the pulse shape to a Landau convoluted with a Gaussian using the following
592parameters:...
593
594\ldots {\it Hendrik, Wolfgang ... }
595
596\begin{figure}[h!]
597\begin{center}
598\includegraphics[totalheight=7cm]{probability_fit_0ns.eps}
599\end{center}
600\caption[Fit Probability.]{Probability of the fit with the input signal shape to the simulated FADC samples
601including electronics and NSB noise.} \label{fig:w_amp_MC_input_TDAS.eps}
602\end{figure}
603
604
605
606\subsection{Used Extractors for this Analysis}
607
608We tested in this TDAS the following parameterized extractors:
609
610\begin{description}
611\item[MExtractFixedWindow]: with the following intialization, if {\textit{maxbin}} defines the
612 mean position of the high-gain FADC slice which carries the pulse maximum \footnote{The function
613{\textit{MExtractor::SetRange(higain first, higain last, logain first, logain last)}} sets the extraction
614range with the high gain start bin {\textit{higain first}} to (including) the last bin {\textit{higain last}}.
615Analoguously for the low gain extraction range. Note that in MARS, the low-gain FADC samples start with
616the index 0 again, thus {\textit{maxbin+0.5}} means in reality {\textit{maxbin+15+0.5}}. }
617:
618\begin{enumerate}
619\item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}+0.5,{\textit{maxbin}}+3.5);
620\item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
621\item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
622\item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+5,{\textit{maxbin}}-0.5,{\textit{maxbin}}+6.5);
623\item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+10,{\textit{maxbin}}-1.5,{\textit{maxbin}}+7.5);
624\suspend{enumerate}
625\item[MExtractFixedWindowSpline]: with the following initialization, if {\textit{maxbin}} defines the
626 mean position of the high-gain FADC slice carrying the pulse maximum \footnote{The function
627{\textit{MExtractor::SetRange(higain first, higain last, logain first, logain last)}} sets the extraction
628range with the high gain start bin {\textit{higain first}} to (including) the last bin {\textit{higain last}}.
629Analoguously for the low gain extraction range. Note that in MARS, the low-gain FADC samples start with
630the index 0 again, thus {\textit{maxbin+0.5}} means in reality {\textit{maxbin+15+0.5}}.}:
631\resume{enumerate}
632\item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+3,{\textit{maxbin}}+0.5,{\textit{maxbin}}+4.5);
633\item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+5.5);
634\item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+4,{\textit{maxbin}}-0.5,{\textit{maxbin}}+5.5);
635\item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+6,{\textit{maxbin}}-0.5,{\textit{maxbin}}+7.5);
636\item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+11,{\textit{maxbin}}-1.5,{\textit{maxbin}}+8.5);
637\suspend{enumerate}
638\item[MExtractFixedWindowPeakSearch]: with the following initialization: \\
639SetRange(0,18,2,14); and:
640\resume{enumerate}
641\item SetWindows(2,2,2); SetOffsetFromWindow(0);
642\item SetWindows(4,4,2); SetOffsetFromWindow(1);
643\item SetWindows(4,6,4); SetOffsetFromWindow(0);
644\item SetWindows(6,6,4); SetOffsetFromWindow(1);
645\item SetWindows(8,8,4); SetOffsetFromWindow(1);
646\item SetWindows(14,10,4); SetOffsetFromWindow(2);
647\suspend{enumerate}
648\item[MExtractTimeAndChargeSlidingWindow]: with the following initialization: \\
649SetRange(0,18,2,14); and:
650\resume{enumerate}
651\item SetWindowSize(2,2);
652\item SetWindowSize(4,4);
653\item SetWindowSize(4,6);
654\item SetWindowSize(6,6);
655\item SetWindowSize(8,8);
656\item SetWindowSize(14,10);
657\suspend{enumerate}
658\item[MExtractTimeAndChargeSpline]: with the following initialization:
659\resume{enumerate}
660\item SetChargeType(MExtractTimeAndChargeSpline::kAmplitude); \\
661SetRange(0,10,4,11);
662\suspend{enumerate}
663SetChargeType(MExtractTimeAndChargeSpline::kIntegral); \\
664SetRange(0,18,2,14); \\
665and:
666\resume{enumerate}
667\item SetRiseTime(0.5); SetFallTime(0.5);
668\item SetRiseTime(0.5); SetFallTime(1.5);
669\item SetRiseTime(1.0); SetFallTime(3.0);
670\item SetRiseTime(1.5); SetFallTime(4.5);
671\suspend{enumerate}
672\item[MExtractTimeAndChargeDigitalFilter]: with the following initialization:
673\resume{enumerate}
674\item SetWeightsFile(``cosmic\_weights6.dat'');
675\item SetWeightsFile(``cosmic\_weights4.dat'');
676\item SetWeightsFile(``cosmic\_weights\_logain6.dat'');
677\item SetWeightsFile(``cosmic\_weights\_logain4.dat'');
678\item SetWeightsFile(``calibration\_weights\_UV6.dat'');
679\suspend{enumerate}
680\item[``Real Fit'']: (not yet implemented, one try)
681\resume{enumerate}
682\item Real Fit
683\end{enumerate}
684\end{description}
685
686Note that the extractors \#30, \#31 are used only to test the stability of the extraction against
687changes in the pulse-shape.
688
689References: \cite{OF77,OF94}.
690
691
692%%% Local Variables:
693%%% mode: latex
694%%% TeX-master: "MAGIC_signal_reco"
695%%% TeX-master: "MAGIC_signal_reco"
696%%% TeX-master: "MAGIC_signal_reco"
697%%% TeX-master: "MAGIC_signal_reco"
698%%% TeX-master: "MAGIC_signal_reco"
699%%% TeX-master: "MAGIC_signal_reco"
700%%% TeX-master: "MAGIC_signal_reco"
701%%% TeX-master: "MAGIC_signal_reco"
702%%% End:
Note: See TracBrowser for help on using the repository browser.