| 1 | \section{Signal Reconstruction Algorithms \label{sec:algorithms}}
|
|---|
| 2 |
|
|---|
| 3 | {\it Missing coding:
|
|---|
| 4 | \begin{itemize}
|
|---|
| 5 | \item Real fit to the expected pulse shape \ldots Hendrik, Wolfgang ???
|
|---|
| 6 | \end{itemize}
|
|---|
| 7 | }
|
|---|
| 8 |
|
|---|
| 9 | \subsection{Implementation of Signal Extractors in MARS}
|
|---|
| 10 |
|
|---|
| 11 | All signal extractor classes are stored in the MARS-directory {\textit{\bf msignal/}}.
|
|---|
| 12 | There, the base classes {\textit{\bf MExtractor}}, {\textit{\bf MExtractTime}}, {\textit{\bf MExtractTimeAndCharge}} and
|
|---|
| 13 | all individual extractors can be found. Figure~\ref{fig:extractorclasses} gives a sketch of the
|
|---|
| 14 | inheritances of each class and what each class calculates.
|
|---|
| 15 |
|
|---|
| 16 | \begin{figure}[htp]
|
|---|
| 17 | \includegraphics[width=0.99\linewidth]{ExtractorClasses.eps}
|
|---|
| 18 | \caption{Sketch of the inheritances of three examplary MARS signal extractor classes: MExtractFixedWindow, MExtractTimeFastSpline and MExtractTimeAndChargeDigitalFilter}
|
|---|
| 19 | \label{fig:extractorclasses}
|
|---|
| 20 | \end{figure}
|
|---|
| 21 |
|
|---|
| 22 | The following base classes for the extractor tasks are used:
|
|---|
| 23 | \begin{description}
|
|---|
| 24 | \item[MExtractor:\xspace] This class provides the basic data members equal for all extractors which are:
|
|---|
| 25 | \begin{enumerate}
|
|---|
| 26 | \item Global extraction ranges, parameterized by the variables
|
|---|
| 27 | {\textit{\bf fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast}} and the function {\textit{\bf SetRange()}}.
|
|---|
| 28 | The ranges always {\textit{\bf include}} the edge slices.
|
|---|
| 29 | \item An internal variable {\textit{\bf fHiLoLast}} regulating the overlap of the desired high-gain
|
|---|
| 30 | extraction range into the low-gain array.
|
|---|
| 31 | \item The maximum possible FADC value, before the slice is declared as saturated, parameterized
|
|---|
| 32 | by the variable {\textit{\bf fSaturationLimit}} (default:\,254).
|
|---|
| 33 | \item The typical delay between high-gain and low-gain slices, expressed in FADC slices and parameterized
|
|---|
| 34 | by the variable {\textit{\bf fOffsetLoGain}} (default:\,1.51)
|
|---|
| 35 | \item Pointers to the used storage containers {\textit{\bf MRawEvtData, MRawRunHeader, MPedestalCam}}
|
|---|
| 36 | and~{\textit{\bf MExtractedSignalCam}}, parameterized by the variables
|
|---|
| 37 | {\textit{\bf fRawEvt, fRunHeader, fPedestals}} and~{\textit{\bf fSignals}}.
|
|---|
| 38 | \item Names of the used storage containers to be searched for in the parameter list, parameterized
|
|---|
| 39 | by the variables {\textit{\bf fNamePedestalCam}} and~{\textit{\bf fNameSignalCam}} (default: ``MPedestalCam''
|
|---|
| 40 | and~''MExtractedSignalCam'').
|
|---|
| 41 | \item The equivalent number of FADC samples, used for the calculation of the pedestal RMS and then the
|
|---|
| 42 | number of photo-electrons with the F-Factor method (see eq.~\ref{eq:rmssubtraction} and
|
|---|
| 43 | section~\ref{sec:photo-electrons}). This number is parameterized by the variables
|
|---|
| 44 | {\textit{\bf fNumHiGainSamples}} and~{\textit{\bf fNumLoGainSamples}}.
|
|---|
| 45 | \end{enumerate}
|
|---|
| 46 |
|
|---|
| 47 | {\textit {\bf MExtractor}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not overwritten.
|
|---|
| 48 | It uses the following (virtual) functions, to be overwritten by the derived extractor class:
|
|---|
| 49 |
|
|---|
| 50 | \begin{enumerate}
|
|---|
| 51 | \item void {\textit {\bf FindSignalHiGain}}(Byte\_t* firstused, Byte\_t* logain, Float\_t\& sum, Byte\_t\& sat) const
|
|---|
| 52 | \item void {\textit {\bf FindSignalLoGain}}(Byte\_t* firstused, Float\_t\& sum, Byte\_t\& sat) const
|
|---|
| 53 | \end{enumerate}
|
|---|
| 54 |
|
|---|
| 55 | where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
|
|---|
| 56 | the pointer ``logain'' points to the beginning of the ``low-gain'' FADC slices array (to be used for
|
|---|
| 57 | pulses reaching into the low-gain array) and the variables ``sum'' and ``sat'' get filled with the
|
|---|
| 58 | extracted signal and the number of saturating FADC slices, respectively.
|
|---|
| 59 | \par
|
|---|
| 60 | The pedestals get subtracted automatically {\textit {\bf after}} execution of these two functions.
|
|---|
| 61 |
|
|---|
| 62 | \item[MExtractTime:\xspace] This class provides - additionally to those already declared in {\textit{\bf MExtractor}} -
|
|---|
| 63 | the basic data members equal for all time extractors which are:
|
|---|
| 64 | \begin{enumerate}
|
|---|
| 65 | \item Pointer to the used storage container {\textit{\bf MArrivalTimeCam}}
|
|---|
| 66 | parameterized by the variables
|
|---|
| 67 | {\textit{\bf fArrTime}}.
|
|---|
| 68 | \item The name of the used ``MArrivalTimeCam''-container to be searched for in the parameter list,
|
|---|
| 69 | parameterized by the variables {\textit{\bf fNameTimeCam}} (default: ``MArrivalTimeCam'' ).
|
|---|
| 70 | \end{enumerate}
|
|---|
| 71 |
|
|---|
| 72 | {\textit {\bf MExtractTime}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not
|
|---|
| 73 | overwritten.
|
|---|
| 74 | It uses the following (virtual) functions, to be overwritten by the derived extractor class:
|
|---|
| 75 |
|
|---|
| 76 | \begin{enumerate}
|
|---|
| 77 | \item void {\textit {\bf FindTimeHiGain}}(Byte\_t* firstused, Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat, const MPedestlPix \&ped) const
|
|---|
| 78 | \item void {\textit {\bf FindTimeLoGain}}(Byte\_t* firstused, Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat, const MPedestalPix \&ped) const
|
|---|
| 79 | \end{enumerate}
|
|---|
| 80 |
|
|---|
| 81 | where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
|
|---|
| 82 | and the variables ``time'', ``dtime'' and ``sat'' get filled with the
|
|---|
| 83 | extracted arrival time, its error and the number of saturating FADC slices, respectively.
|
|---|
| 84 | \par
|
|---|
| 85 | The pedestals can be used for the arrival time extraction via the reference ``ped''.
|
|---|
| 86 |
|
|---|
| 87 | \item[MExtractTimeAndCharge:\xspace] This class provides - additionally to those already declared in
|
|---|
| 88 | {\textit{\bf MExtractor}} and {\textit{\bf MExtractTime}} -
|
|---|
| 89 | the basic data members equal for all time and charge extractors which are:
|
|---|
| 90 | \begin{enumerate}
|
|---|
| 91 | \item The actual extraction window sizes, parameterized by the variables
|
|---|
| 92 | {\textit{\bf fWindowSizeHiGain}} and {\textit{\bf fWindowSizeLoGain}}.
|
|---|
| 93 | \item The shift of the low-gain extraction range start w.r.t. to the found high-gain arrival
|
|---|
| 94 | time, parameterized by the variable {\textit{\bf fLoGainStartShift}} (default: -2.8)
|
|---|
| 95 | \end{enumerate}
|
|---|
| 96 |
|
|---|
| 97 | {\textit {\bf MExtractTimeAndCharge}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not
|
|---|
| 98 | overwritten.
|
|---|
| 99 | It uses the following (virtual) functions, to be overwritten by the derived extractor class:
|
|---|
| 100 |
|
|---|
| 101 | \begin{enumerate}
|
|---|
| 102 | \item void {\textit {\bf FindTimeAndChargeHiGain}}(Byte\_t* firstused, Byte\_t* logain, Float\_t\& sum, Float\_t\& dsum,
|
|---|
| 103 | Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat,
|
|---|
| 104 | const MPedestlPix \&ped, const Bool\_t abflag) const
|
|---|
| 105 | \item void {\textit {\bf FindTimeAndChargeLoGain}}(Byte\_t* firstused, Float\_t\& sum, Float\_t\& dsum,
|
|---|
| 106 | Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat,
|
|---|
| 107 | const MPedestalPix \&ped, const Bool\_t abflag) const
|
|---|
| 108 | \end{enumerate}
|
|---|
| 109 |
|
|---|
| 110 | where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
|
|---|
| 111 | the pointer ``logain'' point to the beginning of the low-gain FADC slices array (to be used for
|
|---|
| 112 | pulses reaching into the ``low-gain'' array),
|
|---|
| 113 | the variables ``sum'', ``dsum'' get filled with the
|
|---|
| 114 | extracted signal and its error. The variables ``time'', ``dtime'' and ``sat'' get filled with the
|
|---|
| 115 | extracted arrival time, its error and the number of saturating FADC slices, respectively.
|
|---|
| 116 | \par
|
|---|
| 117 | The pedestals can be used for the extraction via the reference ``ped'', also the AB-flag is given
|
|---|
| 118 | for AB-clock noise correction.
|
|---|
| 119 | \end{description}
|
|---|
| 120 |
|
|---|
| 121 |
|
|---|
| 122 | \subsection{Pure Signal Extractors}
|
|---|
| 123 |
|
|---|
| 124 | The pure signal extractors have in common that they reconstruct only the
|
|---|
| 125 | charge, but not the arrival time. All treated extractors here derive from the MARS-base
|
|---|
| 126 | class {\textit{\bf MExtractor}} which provides the following facilities:
|
|---|
| 127 |
|
|---|
| 128 | \begin{itemize}
|
|---|
| 129 | \item The global extraction limits can be set from outside
|
|---|
| 130 | \item FADC saturation is kept track of
|
|---|
| 131 | \end{itemize}
|
|---|
| 132 |
|
|---|
| 133 | The following adjustable parameters have to be set from outside:
|
|---|
| 134 | \begin{description}
|
|---|
| 135 | \item[Global extraction limits:\xspace] Limits in between which the extractor is allowed
|
|---|
| 136 | to extract the signal, for high gain and low gain, respectively.
|
|---|
| 137 | \end{description}
|
|---|
| 138 |
|
|---|
| 139 | As the pulses jitter by about one FADC slice,
|
|---|
| 140 | not every pulse lies exactly within the optimal limits, especially if one takes small
|
|---|
| 141 | extraction windows.
|
|---|
| 142 | Moreover, the readout position with respect to the trigger position has changed a couple
|
|---|
| 143 | of times during last year, therefore a very careful adjustment of the extraction limits
|
|---|
| 144 | is mandatory before using these extractors.
|
|---|
| 145 |
|
|---|
| 146 | \subsubsection{Fixed Window}
|
|---|
| 147 |
|
|---|
| 148 | This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindow}}.
|
|---|
| 149 | It simply adds the FADC slice contents in the assigned ranges.
|
|---|
| 150 | As it does not correct for the clock-noise, only an even number of samples is allowed.
|
|---|
| 151 | Figure~\ref{fig:fixedwindowsketch} gives a sketch of the used extraction ranges for this
|
|---|
| 152 | paper and two typical calibration pulses.
|
|---|
| 153 |
|
|---|
| 154 | \begin{figure}[htp]
|
|---|
| 155 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindow_5Led_UV.eps}
|
|---|
| 156 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindow_23Led_Blue.eps}
|
|---|
| 157 | \caption[Sketch extraction ranges MExtractFixedWindow]{%
|
|---|
| 158 | Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindow}}
|
|---|
| 159 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
|---|
| 160 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
|---|
| 161 | \label{fig:fixedwindowsketch}
|
|---|
| 162 | \end{figure}
|
|---|
| 163 |
|
|---|
| 164 |
|
|---|
| 165 | \subsubsection{Fixed Window with Integrated Cubic Spline}
|
|---|
| 166 |
|
|---|
| 167 | This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindowSpline}}. It
|
|---|
| 168 | uses a cubic spline algorithm, adapted from \cite{NUMREC} and integrates the
|
|---|
| 169 | spline interpolated FADC slice values from a fixed extraction range. The edge slices are counted as half.
|
|---|
| 170 | As it does not correct for the clock-noise, only an odd number of samples is allowed.
|
|---|
| 171 | Figure~\ref{fig:fixedwindowsplinesketch} gives a sketch of the used extraction ranges for this
|
|---|
| 172 | paper and two typical calibration pulses.
|
|---|
| 173 |
|
|---|
| 174 | \begin{figure}[htp]
|
|---|
| 175 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindowSpline_5Led_UV.eps}
|
|---|
| 176 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindowSpline_23Led_Blue.eps}
|
|---|
| 177 | \caption[Sketch extraction ranges MExtractFixedWindowSpline]{%
|
|---|
| 178 | Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindowSpline}}
|
|---|
| 179 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
|---|
| 180 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
|---|
| 181 | \label{fig:fixedwindowsplinesketch}
|
|---|
| 182 | \end{figure}
|
|---|
| 183 |
|
|---|
| 184 | \subsubsection{Fixed Window with Global Peak Search}
|
|---|
| 185 |
|
|---|
| 186 | This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindowPeakSearch}}.
|
|---|
| 187 | The basic idea of this extractor is to correct for coherent movements in arrival time for all pixels,
|
|---|
| 188 | as e.g. caused by the trigger jitter.
|
|---|
| 189 | In a first loop, it fixes a reference point defined as the highest sum of
|
|---|
| 190 | consecutive non-saturating FADC slices in a (smaller) peak-search window.
|
|---|
| 191 | \par
|
|---|
| 192 | In a second loop over the pixels,
|
|---|
| 193 | it adds the FADC contents starting from a pre-defined offset from the obtained peak-search window
|
|---|
| 194 | over an extraction window of a pre-defined window size.
|
|---|
| 195 | It loops twice over all pixels in every event, because it has to find the reference point, first.
|
|---|
| 196 | As it does not correct for the clock-noise, only an even number of samples is allowed.
|
|---|
| 197 | For a high intensity calibration run causing high-gain saturation in the whole camera, this
|
|---|
| 198 | extractor apparently fails since only dead pixels which cannot produced a saturated signal, are taken into account
|
|---|
| 199 | in the peak search. For this special case, we modified {\textit{\bf MExtractFixedWindowPeakSearch}}
|
|---|
| 200 | such to define the peak search window as the one starting from the mean position of the first saturating slice.
|
|---|
| 201 | \par
|
|---|
| 202 | The following adjustable parameters have to be set from outside:
|
|---|
| 203 | \begin{description}
|
|---|
| 204 | \item[Peak Search Window:\xspace] Defines the ``sliding window'' size within which the peaking sum is
|
|---|
| 205 | searched for (default: 4 slices)
|
|---|
| 206 | \item[Offset from Window:\xspace] Defines the offset of the start of the extraction window w.r.t. the
|
|---|
| 207 | starting point of the obtained peak search window (default: 1 slice)
|
|---|
| 208 | \item[Low-Gain Peak shift:\xspace] Defines the shift in the low-gain with respect to the peak found
|
|---|
| 209 | in the high-gain (default: 1 slice)
|
|---|
| 210 | \end{description}
|
|---|
| 211 |
|
|---|
| 212 | Figure~\ref{fig:fixedwindowpeaksearchsketch} gives a sketch of the possible peak-search and extraction
|
|---|
| 213 | window positions in two typical calibration pulses.
|
|---|
| 214 |
|
|---|
| 215 | \begin{figure}[htp]
|
|---|
| 216 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindowPeakSearch_5Led_UV.eps}
|
|---|
| 217 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindowPeakSearch_23Led_Blue.eps}
|
|---|
| 218 | \caption[Sketch extraction ranges MExtractFixedWindowPeakSearch]{%
|
|---|
| 219 | Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindowPeakSearch}}
|
|---|
| 220 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
|---|
| 221 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
|---|
| 222 | \label{fig:fixedwindowpeaksearchsketch}
|
|---|
| 223 | \end{figure}
|
|---|
| 224 |
|
|---|
| 225 | \subsection{Combined Extractors}
|
|---|
| 226 |
|
|---|
| 227 | The combined extractors have in common that they reconstruct the arrival time and
|
|---|
| 228 | the charge at the same time and for the same pulse.
|
|---|
| 229 | All treated combined extractors here derive from the MARS-base
|
|---|
| 230 | class {\textit{\bf MExtractTimeAndCharge}} which itself derives from MExtractor and MExtractTime.
|
|---|
| 231 | It provides the following facilities:
|
|---|
| 232 |
|
|---|
| 233 | \begin{itemize}
|
|---|
| 234 | \item Only one loop over all pixels is performed.
|
|---|
| 235 | \item The individual FADC slice values get the clock-noise-corrected pedestals immediately subtracted.
|
|---|
| 236 | \item The low-gain extraction range is adapted dynamically, based on the computed arrival time
|
|---|
| 237 | from the high-gain samples.
|
|---|
| 238 | \item Extracted times from the low-gain samples get corrected for the intrinsic time delay of the low-gain
|
|---|
| 239 | pulse.
|
|---|
| 240 | \item The global extraction limits can be set from outside.
|
|---|
| 241 | \item FADC saturation is kept track of.
|
|---|
| 242 | \end{itemize}
|
|---|
| 243 |
|
|---|
| 244 | The following adjustable parameters have to be set from outside, additionally to those declared in the
|
|---|
| 245 | base classes MExtractor and MExtractTime:
|
|---|
| 246 |
|
|---|
| 247 | \begin{description}
|
|---|
| 248 | \item[Global extraction limits:\xspace] Limits in between which the extractor is allowed
|
|---|
| 249 | to search. They are fixed by the extractor for the high-gain, but re-adjusted for
|
|---|
| 250 | every event in the low-gain, depending on the arrival time found in the low-gain.
|
|---|
| 251 | However, the dynamically adjusted window is not allowed to pass beyond the global
|
|---|
| 252 | limits.
|
|---|
| 253 | \item[Low-gain start shift:\xspace] Global shift between the computed high-gain arrival
|
|---|
| 254 | time and the start of the low-gain extraction limit (corrected for the intrinsic time offset).
|
|---|
| 255 | This variable tells where the extractor is allowed to start searching for the low-gain signal
|
|---|
| 256 | if the high-gain arrival time is known. It avoids that the extractor gets confused by possible high-gain
|
|---|
| 257 | signals leaking into the ``low-gain'' region (default: -2.8).
|
|---|
| 258 | \end{description}
|
|---|
| 259 |
|
|---|
| 260 | \subsubsection{Sliding Window with Amplitude-Weighted Time}
|
|---|
| 261 |
|
|---|
| 262 | This extractor is implemented in the MARS-class {\textit{\bf MExtractTimeAndChargeSlidingWindow}}.
|
|---|
| 263 | It extracts the signal from a sliding window of an adjustable size, for high-gain and low-gain
|
|---|
| 264 | individually (default: 6 and 6). The signal is the one which maximizes the summed
|
|---|
| 265 | (clock-noise and pedestal-corrected) consecutive FADC slice contents.
|
|---|
| 266 | \par
|
|---|
| 267 | The amplitude-weighted arrival time is calculated from the window with
|
|---|
| 268 | the highest FADC slice contents integral using the following formula:
|
|---|
| 269 |
|
|---|
| 270 | \begin{equation}
|
|---|
| 271 | t = \frac{\sum_{i=i_0}^{i_0+ws} s_i \cdot i}{\sum_{i=i_0}^{i_0t+ws} i}
|
|---|
| 272 | \end{equation}
|
|---|
| 273 | where $i$ denotes the FADC slice index, starting from $i_0$
|
|---|
| 274 | window and running over a window of size $ws$. $s_i$ the clock-noise and
|
|---|
| 275 | pedestal-corrected FADC slice contents at slice position $i$.
|
|---|
| 276 | \par
|
|---|
| 277 | The following adjustable parameters have to be set from outside:
|
|---|
| 278 | \begin{description}
|
|---|
| 279 | \item[Window sizes:\xspace] Independently for high-gain and low-gain (default: 6,6)
|
|---|
| 280 | \end{description}
|
|---|
| 281 |
|
|---|
| 282 | \begin{figure}[htp]
|
|---|
| 283 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSlidingWindow_5Led_UV.eps}
|
|---|
| 284 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSlidingWindow_23Led_Blue.eps}
|
|---|
| 285 | \caption[Sketch calculated arrival times MExtractTimeAndChargeSlidingWindow]{%
|
|---|
| 286 | Sketch of the calculated arrival times for the extractor {\textit{\bf MExtractTimeAndChargeSlidingWindow}}
|
|---|
| 287 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
|---|
| 288 | The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
|
|---|
| 289 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
|---|
| 290 | \label{fig:slidingwindowsketch}
|
|---|
| 291 | \end{figure}
|
|---|
| 292 |
|
|---|
| 293 | \subsubsection{Cubic Spline with Sliding Window or Amplitude Extraction}
|
|---|
| 294 |
|
|---|
| 295 | This extractor is implemented in the MARS-class {\textit{\bf MExtractTimeAndChargeSpline}}.
|
|---|
| 296 | It interpolates the FADC contents using a cubic spline algorithm, adapted from \cite{NUMREC}.
|
|---|
| 297 | In a second step, it searches for the position of the spline maximum. From then on, two
|
|---|
| 298 | possibilities are offered:
|
|---|
| 299 |
|
|---|
| 300 | \begin{enumerate}
|
|---|
| 301 | \item[Extraction Type Amplitude:\xspace] The amplitude of the spline maximum is taken as charge signal
|
|---|
| 302 | and the (precisee) position of the maximum is returned as arrival time. This type is faster, since it
|
|---|
| 303 | performs not spline intergraion .
|
|---|
| 304 | \item[Extraction Type Integral:\xspace] The integrated spline between maximum position minus
|
|---|
| 305 | rise time (default: 1.5 slices) and maximum position plus fall time (default: 4.5 slices)
|
|---|
| 306 | is taken as charge signal and the position of the half maximum left from the position of the maximum
|
|---|
| 307 | is returned as arrival time (default).
|
|---|
| 308 | The low-gain signal stretches the rise and fall time by a stretch factor (default: 1.5). This type
|
|---|
| 309 | is slower, but yields more precise results (see section~\ref{sec:performance}) .
|
|---|
| 310 | The charge integration resolution is set to 0.1 FADC slices.
|
|---|
| 311 | \end{enumerate}
|
|---|
| 312 |
|
|---|
| 313 | The following adjustable parameters have to be set from outside:
|
|---|
| 314 |
|
|---|
| 315 | \begin{description}
|
|---|
| 316 | \item[Charge Extraction Type:\xspace] The amplitude of the spline maximum can be chosen while the position
|
|---|
| 317 | of the maximum is returned as arrival time. This type is fast. \\
|
|---|
| 318 | Otherwise, the integrated spline between maximum position minus rise time (default: 1.5 slices)
|
|---|
| 319 | and maximum position plus fall time (default: 4.5 slices) is taken as signal and the position of the
|
|---|
| 320 | half maximum is returned as arrival time (default).
|
|---|
| 321 | The low-gain signal stretches the rise and fall time by a stretch factor (default: 1.5). This type
|
|---|
| 322 | is slower, but more precise. The charge integration resolution is 0.1 FADC slices.
|
|---|
| 323 | \item[Rise Time and Fall Time:\xspace] Can be adjusted for the integration charge extraction type.
|
|---|
| 324 | \item[Resolution:\xspace] Defined as the maximum allowed difference between the calculated half maximum value and
|
|---|
| 325 | the computed spline value at the arrival time position. Can be adjusted for the half-maximum time extraction
|
|---|
| 326 | type.
|
|---|
| 327 | \item[Low Gain Stretch:\xspace] Can be adjusted to account for the larger rise and fall times in the
|
|---|
| 328 | low-gain as compared to the high gain pulses (default: 1.5)
|
|---|
| 329 | \end{description}
|
|---|
| 330 |
|
|---|
| 331 | \begin{figure}[htp]
|
|---|
| 332 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSpline_5Led_UV.eps}
|
|---|
| 333 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSpline_23Led_Blue.eps}
|
|---|
| 334 | \caption[Sketch calculated arrival times MExtractTimeAndChargeSpline]{%
|
|---|
| 335 | Sketch of the calculated arrival times for the extractor {\textit{\bf MExtractTimeAndChargeSpline}}
|
|---|
| 336 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
|---|
| 337 | The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
|
|---|
| 338 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
|---|
| 339 | \label{fig:splinesketch}
|
|---|
| 340 | \end{figure}
|
|---|
| 341 |
|
|---|
| 342 | \subsubsection{Digital Filter}
|
|---|
| 343 |
|
|---|
| 344 | This extractor is implemented in the MARS-class {\textit{\bf MExtractTimeAndChargeDigitalFilter}}.
|
|---|
| 345 |
|
|---|
| 346 |
|
|---|
| 347 | The goal of the digital filtering method \cite{OF94,OF77} is to optimally reconstruct the amplitude and time origin of a signal with a known signal shape
|
|---|
| 348 | from discrete measurements of the signal. Thereby, the noise contribution to the amplitude reconstruction is minimized.
|
|---|
| 349 |
|
|---|
| 350 | For the digital filtering method, three assumptions have to be made:
|
|---|
| 351 |
|
|---|
| 352 | \begin{itemize}
|
|---|
| 353 | \item{The normalized signal shape has to be independent of the signal amplitude.}
|
|---|
| 354 | \item{The noise properties have to be independent of the signal amplitude.}
|
|---|
| 355 | \item{The noise auto-correlation matrix does not change its form significantly with time.}
|
|---|
| 356 | \end{itemize}
|
|---|
| 357 |
|
|---|
| 358 | \par
|
|---|
| 359 | \ldots {\textit{\bf IS THIS TRUE FOR MAGIC???? }} \ldots
|
|---|
| 360 | \par
|
|---|
| 361 |
|
|---|
| 362 | Let $g(t)$ be the normalized signal shape, $E$ the signal amplitude and $\tau$ the time shift
|
|---|
| 363 | of the physical signal from the predicted signal shape. Then the time dependence of the signal, $y(t)$, is given by:
|
|---|
| 364 |
|
|---|
| 365 | \begin{equation}
|
|---|
| 366 | y(t)=E \cdot g(t-\tau) + b(t) \ ,
|
|---|
| 367 | \end{equation}
|
|---|
| 368 |
|
|---|
| 369 | where $b(t)$ is the time-dependent noise contribution. For small time shifts $\tau$ (usually smaller than
|
|---|
| 370 | one FADC slice width),
|
|---|
| 371 | the time dependence can be linearized by the use of a Taylor expansion:
|
|---|
| 372 |
|
|---|
| 373 | \begin{equation} \label{shape_taylor_approx}
|
|---|
| 374 | y(t)=E \cdot g(t) - E\tau \cdot \dot{g}(t) + b(t) \ ,
|
|---|
| 375 | \end{equation}
|
|---|
| 376 |
|
|---|
| 377 | where $\dot{g}(t)$ is the time derivative of the signal shape. Discrete
|
|---|
| 378 | measurements $y_i$ of the signal at times $t_i \ (i=1,...,n)$ have the form:
|
|---|
| 379 |
|
|---|
| 380 | \begin{equation}
|
|---|
| 381 | y_i=E \cdot g_i- E\tau \cdot \dot{g}_i +b_i \ .
|
|---|
| 382 | \end{equation}
|
|---|
| 383 |
|
|---|
| 384 | The correlation of the noise contributions at times $t_i$ and $t_j$ can be expressed in the
|
|---|
| 385 | noise autocorrelation matrix $\boldsymbol{B}$:
|
|---|
| 386 |
|
|---|
| 387 | \begin{equation}
|
|---|
| 388 | B_{ij} = \langle b_i b_j \rangle - \langle b_i \rangle \langle b_j
|
|---|
| 389 | \rangle \ .
|
|---|
| 390 | \label{eq:autocorr}
|
|---|
| 391 | \end{equation}
|
|---|
| 392 | %\equiv \langle b_i b_j \rangle with $\langle b_i \rangle = 0$.
|
|---|
| 393 |
|
|---|
| 394 | The signal amplitude $E$, and the product of amplitude and time shift $E \tau$, can be estimated from the given set of
|
|---|
| 395 | measurements $\boldsymbol{y} = (y_1, ... ,y_n)$ by minimizing the excess noise contribution with respect to the known noise
|
|---|
| 396 | auto-correlation:
|
|---|
| 397 |
|
|---|
| 398 | \begin{eqnarray}
|
|---|
| 399 | \chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) (\boldsymbol{B}^{-1})_{ij} (y_j - E g_j-E\tau \dot{g}_j) \\
|
|---|
| 400 | &=& (\boldsymbol{y} - E
|
|---|
| 401 | \boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ ,
|
|---|
| 402 | \end{eqnarray}
|
|---|
| 403 |
|
|---|
| 404 | where the last expression is matricial. $\chi^2$ is a continuous function of $\tau$ and will have to be discretized itself for a
|
|---|
| 405 | desired resolution. $\chi^2$ is also proportional to the auto noise-correlation matrix where increases in the noise level lead to
|
|---|
| 406 | a multiplicative factor for all matrix elements and thus do not affect the position of the maximum of $\chi^2$.
|
|---|
| 407 | The minimum of $\chi^2$ is obtained for:
|
|---|
| 408 |
|
|---|
| 409 | \begin{equation}
|
|---|
| 410 | \frac{\partial \chi^2(E, E\tau)}{\partial E} = 0 \qquad \text{and} \qquad \frac{\partial \chi^2(E, E\tau)}{\partial(E\tau)} = 0 \ .
|
|---|
| 411 | \end{equation}
|
|---|
| 412 |
|
|---|
| 413 |
|
|---|
| 414 | Taking into account that $\boldsymbol{B}$ is a symmetric matrix, this leads to the following
|
|---|
| 415 | two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude
|
|---|
| 416 | and time offset $\overline{E\tau}$:
|
|---|
| 417 |
|
|---|
| 418 | \begin{eqnarray}
|
|---|
| 419 | 0&=&-\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau}
|
|---|
| 420 | \\
|
|---|
| 421 | 0&=&-\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau} \ .
|
|---|
| 422 | \end{eqnarray}
|
|---|
| 423 |
|
|---|
| 424 | Solving these equations one gets the following solutions:
|
|---|
| 425 |
|
|---|
| 426 | \begin{equation}
|
|---|
| 427 | \overline{E}(\tau) = \boldsymbol{w}_{\text{amp}}^T (\tau)\boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{amp}} = \frac{ (\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \boldsymbol{g} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ ,
|
|---|
| 428 | \end{equation}
|
|---|
| 429 |
|
|---|
| 430 | \begin{equation}
|
|---|
| 431 | \overline{E\tau}(\tau)= \boldsymbol{w}_{\text{time}}^T(\tau) \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{time}} = \frac{ ({\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} {\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ .
|
|---|
| 432 | \end{equation}
|
|---|
| 433 |
|
|---|
| 434 |
|
|---|
| 435 | Thus $\overline{E}$ and $\overline{E\tau}$ are given by a weighted sum of the discrete measurements $y_i$
|
|---|
| 436 | with the digital filtering weights for the amplitude, $w_{\text{amp}}(\tau)$, and time shift, $w_{\text{time}}(\tau)$
|
|---|
| 437 | where the time dependency gets discretized once again leading to a set of weights samples depending on the
|
|---|
| 438 | discretized time $\tau$.
|
|---|
| 439 |
|
|---|
| 440 | \par
|
|---|
| 441 | \ldots {\textit{\bf IS THIS CORRECT LIKE THIS???}} \ldots
|
|---|
| 442 | \par
|
|---|
| 443 |
|
|---|
| 444 | Note the remaining time dependence of the two weights which follow from the dependency of $\boldsymbol{g}$ and
|
|---|
| 445 | $\dot{\boldsymbol{g}}$ on the position of the pulse with respect to the FADC bin positions.
|
|---|
| 446 | \par
|
|---|
| 447 | Because of the truncation of the Taylor series in equation (\ref{shape_taylor_approx}) the above results are
|
|---|
| 448 | only valid for vanishing time offsets $\tau$. For non-zero time offsets one has to iterate the problem using
|
|---|
| 449 | the time shifted signal shape $g(t-\tau)$.
|
|---|
| 450 |
|
|---|
| 451 | The covariance matrix $\boldsymbol{V}$ of $\overline{E}$ and $\overline{E\tau}$ is given by:
|
|---|
| 452 |
|
|---|
| 453 | \begin{equation}
|
|---|
| 454 | \left(\boldsymbol{V}^{-1}\right)_{i,j}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in \{E, E\tau\} \ .
|
|---|
| 455 | \end{equation}
|
|---|
| 456 |
|
|---|
| 457 | The expected contribution of the noise to the estimated amplitude, $\sigma_E$, is:
|
|---|
| 458 |
|
|---|
| 459 | \begin{equation}\label{of_noise}
|
|---|
| 460 | \sigma_E^2=\boldsymbol{V}_{E,E}=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
|
|---|
| 461 | \end{equation}
|
|---|
| 462 |
|
|---|
| 463 | The expected contribution of the noise to the estimated timing, $\sigma_{\tau}$, is:
|
|---|
| 464 |
|
|---|
| 465 | \begin{equation}\label{of_noise_time}
|
|---|
| 466 | E^2 \cdot \sigma_{\tau}^2=\boldsymbol{V}_{E\tau,E\tau}=\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
|
|---|
| 467 | \end{equation}
|
|---|
| 468 |
|
|---|
| 469 | For the MAGIC signals, as implemented in the MC simulations, a pedestal RMS of a single FADC slice of 4 FADC counts introduces an error in the
|
|---|
| 470 | reconstructed signal and time of:
|
|---|
| 471 |
|
|---|
| 472 | \begin{equation}\label{of_noise}
|
|---|
| 473 | \sigma_E \approx 8.3 \ \mathrm{FADC\ counts} \qquad \sigma_{\tau} \approx \frac{6.5\ \Delta T_{\mathrm{FADC}}}{(E\ /\ \mathrm{FADC\ counts})} \ ,
|
|---|
| 474 | \end{equation}
|
|---|
| 475 |
|
|---|
| 476 | \par
|
|---|
| 477 | \ldots {\textit{\bf CALCULATE THESE NUMBERS FOR 6 SLICES! }} \ldots
|
|---|
| 478 | \par
|
|---|
| 479 |
|
|---|
| 480 | where $\Delta T_{\mathrm{FADC}} = 3.33$ ns is the sampling interval of the MAGIC FADCs.
|
|---|
| 481 |
|
|---|
| 482 |
|
|---|
| 483 | For an IACT there are two types of background noise. On the one hand, there is the constantly present electronics noise,
|
|---|
| 484 | on the other hand, the light of the night sky introduces a sizeable background noise to the measurement of Cherenkov photons from air showers.
|
|---|
| 485 |
|
|---|
| 486 | The electronics noise is largely white, uncorrelated in time. The noise from the night sky background photons is the superposition of the
|
|---|
| 487 | detector response to single photo electrons following a Poisson distribution in time. Figure \ref{fig:noise_autocorr_AB_36038_TDAS} shows the noise
|
|---|
| 488 | autocorrelation matrix for an open camera. The large noise autocorrelation in time of the current FADC system is due to the pulse shaping with a
|
|---|
| 489 | shaping constant of 6 ns.
|
|---|
| 490 |
|
|---|
| 491 | In general, the amplitude and time weights, $\boldsymbol{w}_{\text{amp}}$ and $\boldsymbol{w}_{\text{time}}$, depend on the pulse shape, the
|
|---|
| 492 | derivative of the pulse shape and the noise autocorrelation. In the high gain samples the correlated night sky background noise dominates over
|
|---|
| 493 | the white electronics noise. Thus different noise levels just cause the noise autocorrelation matrix $\boldsymbol{B}$ to change by a same factor,
|
|---|
| 494 | which cancels out in the weights calculation. Thus in the high gain the weights are to a very good approximation independent of the night
|
|---|
| 495 | sky background noise level.
|
|---|
| 496 |
|
|---|
| 497 | Contrary to that in the low gain samples ... .
|
|---|
| 498 | \ldots
|
|---|
| 499 | \ldots {\textit{\bf SITUATION FOR LOW-GAIN SAMPLES! }} \ldots
|
|---|
| 500 | \par
|
|---|
| 501 |
|
|---|
| 502 |
|
|---|
| 503 |
|
|---|
| 504 | \begin{figure}[h!]
|
|---|
| 505 | \begin{center}
|
|---|
| 506 | \includegraphics[totalheight=7cm]{noise_autocorr_AB_36038_TDAS.eps}
|
|---|
| 507 | \end{center}
|
|---|
| 508 | \caption[Noise autocorrelation.]{Noise autocorrelation matrix for open camera including the noise due to night sky background fluctuations.} \label{fig:noise_autocorr_AB_36038_TDAS}
|
|---|
| 509 | \end{figure}
|
|---|
| 510 |
|
|---|
| 511 |
|
|---|
| 512 |
|
|---|
| 513 | Using the average reconstructed pulpo pulse shape, as shown in figure \ref{fig:pulpo_shape_low}, and the
|
|---|
| 514 | reconstructed noise autocorrelation matrix from a pedestal run
|
|---|
| 515 |
|
|---|
| 516 | \par
|
|---|
| 517 | \ldots {\textit{\bf WHICH RUN (RUN NUMBER, WHICH NSB?, WHICH PIXELS ??}} \ldots
|
|---|
| 518 | \par
|
|---|
| 519 |
|
|---|
| 520 | with random triggers, the digital filter
|
|---|
| 521 | weights are computed. Figures \ref{fig:w_time_MC_input_TDAS} and \ref{fig:w_amp_MC_input_TDAS} show the
|
|---|
| 522 | parameterization of the amplitude and timing weights for the MC pulse shape as a function of the ...
|
|---|
| 523 |
|
|---|
| 524 | \par
|
|---|
| 525 | \ldots {\textit{\bf MISSING END OF SENTENCE }} \ldots
|
|---|
| 526 | \par
|
|---|
| 527 |
|
|---|
| 528 | \begin{figure}[h!]
|
|---|
| 529 | \begin{center}
|
|---|
| 530 | \includegraphics[totalheight=7cm]{w_time_MC_input_TDAS.eps}
|
|---|
| 531 | \end{center}
|
|---|
| 532 | \caption[Time weights.]{Time weights $w_{\mathrm{time}}(t_0) \ldots w_{\mathrm{time}}(t_5)$ for a window size of 6 FADC slices for the pulse shape
|
|---|
| 533 | used in the MC simulations. The first weight $w_{\mathrm{time}}(t_0)$ is plotted as a function of the relative time $t_{\text{rel}}$ the trigger and the
|
|---|
| 534 | FADC clock in the range $[-0.5,0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5,1.5[ \ T_{\text{ADC}}$ and so on. A binning resolution
|
|---|
| 535 | of $0.1 T_{\text{ADC}}$ has been chosen.} \label{fig:w_time_MC_input_TDAS}
|
|---|
| 536 | \end{figure}
|
|---|
| 537 |
|
|---|
| 538 | \begin{figure}[h!]
|
|---|
| 539 | \begin{center}
|
|---|
| 540 | \includegraphics[totalheight=7cm]{w_amp_MC_input_TDAS.eps}
|
|---|
| 541 | \end{center}
|
|---|
| 542 | \caption[Amplitude weights.]{Amplitude weights $w_{\mathrm{amp}}(t_0) \ldots w_{\mathrm{amp}}(t_5)$ for a window size of 6 FADC slices for the
|
|---|
| 543 | pulse shape used in the MC simulations. The first weight $w_{\mathrm{amp}}(t_0)$ is plotted as a function of the relative time $t_{\text{rel}}$
|
|---|
| 544 | the trigger and the FADC clock in the range $[-0.5,0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5,1.5[ \ T_{\text{ADC}}$ and so on.
|
|---|
| 545 | A binning resolution of $0.1\, T_{\text{ADC}}$ has been chosen.} \label{fig:w_amp_MC_input_TDAS}
|
|---|
| 546 | \end{figure}
|
|---|
| 547 |
|
|---|
| 548 |
|
|---|
| 549 |
|
|---|
| 550 | In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed using a window of $n$ slices:
|
|---|
| 551 |
|
|---|
| 552 | \begin{equation}
|
|---|
| 553 | e_{i_0}=\sum_{i=i_0}^{i_0+n-1} w_{\mathrm{amp}}(t_i)y(t_{i+i_0}) \qquad (e\tau)_{i_0}=\sum_{i=i_0}^{i_0+n-1} w_{\mathrm{time}}(t_i)y(t_{i+i_0})
|
|---|
| 554 | \end{equation}
|
|---|
| 555 |
|
|---|
| 556 | for all possible signal start slices $i_0$. Let $i_0^*$ be the signal start slice with the largest $e_{i_0}$. Then in a second step the timing offset $\tau$ is calculated:
|
|---|
| 557 |
|
|---|
| 558 | \begin{equation}
|
|---|
| 559 | \tau=\frac{(e\tau)_{i_0^*}}{e_{i_0^*}}
|
|---|
| 560 | \end{equation}
|
|---|
| 561 |
|
|---|
| 562 | and the weights iterated:
|
|---|
| 563 |
|
|---|
| 564 | \begin{equation}
|
|---|
| 565 | E=\sum_{i=i_0^*}^{i_0^*+n-1} w_{\mathrm{amp}}(t_i - \tau)y(t_{i+i_0^*}) \qquad E \theta=\sum_{i=i_0^*}^{i_0^*+n-1} w_{\mathrm{time}}(t_i - \tau)y(t_{i+i_0^*}) \ .
|
|---|
| 566 | \end{equation}
|
|---|
| 567 |
|
|---|
| 568 | The reconstructed signal is then taken to be $E$ and the reconstructed arrival time $t_{\text{arrival}}$ is
|
|---|
| 569 |
|
|---|
| 570 | \begin{equation}
|
|---|
| 571 | t_{\text{arrival}} = i_0^* + \tau + \theta \ .
|
|---|
| 572 | \end{equation}
|
|---|
| 573 |
|
|---|
| 574 |
|
|---|
| 575 |
|
|---|
| 576 | % This does not apply for MAGIC as the LONs are giving always a correlated noise (in addition to the artificial shaping)
|
|---|
| 577 |
|
|---|
| 578 | %In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is:
|
|---|
| 579 |
|
|---|
| 580 | %\begin{equation}
|
|---|
| 581 | %\boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ ,
|
|---|
| 582 | %\end{equation}
|
|---|
| 583 |
|
|---|
| 584 | %where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes:
|
|---|
| 585 |
|
|---|
| 586 |
|
|---|
| 587 | %\begin{equation}
|
|---|
| 588 | %\frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ .
|
|---|
| 589 | %\end{equation}
|
|---|
| 590 |
|
|---|
| 591 |
|
|---|
| 592 | \begin{figure}[h!]
|
|---|
| 593 | \begin{center}
|
|---|
| 594 | \includegraphics[totalheight=7cm]{amp_sliding.eps}
|
|---|
| 595 | \includegraphics[totalheight=7cm]{time_sliding.eps}
|
|---|
| 596 | \end{center}
|
|---|
| 597 | \caption[Digital filter weights applied.]{Digital filter weights applied to the recorded FADC time slices of
|
|---|
| 598 | one calibration pulse. The left plot shows the result of the applied amplitude weights
|
|---|
| 599 | $e(t_0)=\sum_{i=0}^{i=n-1} w_{\mathrm{amp}}(t_0+i \cdot T_{\text{ADC}})y(t_0+i \cdot T_{\text{ADC}})$ and
|
|---|
| 600 | the right plot shows the result of the applied timing weights
|
|---|
| 601 | $e\tau(t_0)=\sum_{i=0}^{i=n-1} w_{\mathrm{time}}(t_0+i \cdot T_{\text{ADC}})y(t_0+i \cdot T_{\text{ADC}})$ .}
|
|---|
| 602 | \label{fig:amp_sliding}
|
|---|
| 603 | \end{figure}
|
|---|
| 604 |
|
|---|
| 605 |
|
|---|
| 606 | \ldots
|
|---|
| 607 | \textit {\bf FIGURE~\ref{fig:shape_fit_TDAS} shows what???}
|
|---|
| 608 | \ldots
|
|---|
| 609 |
|
|---|
| 610 | Figure \ref{fig:shape_fit_TDAS} shows the FADC slices of a single MC event together with the result of a full
|
|---|
| 611 | fit of the input MC pulse shape to the simulated FADC samples together with the result of the numerical fit
|
|---|
| 612 | using the digital filter.
|
|---|
| 613 |
|
|---|
| 614 |
|
|---|
| 615 | \begin{figure}[h!]
|
|---|
| 616 | \begin{center}
|
|---|
| 617 | \includegraphics[totalheight=7cm]{shape_fit_TDAS.eps}
|
|---|
| 618 | \end{center}
|
|---|
| 619 | \caption[Shape fit.]{Full fit to the MC pulse shape with the MC input shape and a numerical fit using the
|
|---|
| 620 | digital filter.} \label{fig:shape_fit_TDAS}
|
|---|
| 621 | \end{figure}
|
|---|
| 622 |
|
|---|
| 623 |
|
|---|
| 624 | \ldots {\it Hendrik ... }
|
|---|
| 625 |
|
|---|
| 626 | The following free adjustable parameters have to be set from outside:
|
|---|
| 627 |
|
|---|
| 628 | \begin{description}
|
|---|
| 629 | \item[Weights File:\xspace] An ascii-file containing the weights, the binning resolution and
|
|---|
| 630 | the window size. Currently, the following weight files have been created:
|
|---|
| 631 | \begin{itemize}
|
|---|
| 632 | \item "cosmics\_weights.dat'' with a window size of 6 FADC slices
|
|---|
| 633 | \item "cosmics\_weights4.dat'' with a window size of 4 FADC slices
|
|---|
| 634 | \item "calibration\_weights\_blue.dat'' with a window size of 6 FADC slices
|
|---|
| 635 | \item "calibration\_weights4\_blue.dat'' with a window size of 4 FADC slices
|
|---|
| 636 | \item "calibration\_weights\_UV.dat'' with a window size of 6 FADC slices and in the low-gain the
|
|---|
| 637 | calibration weigths obtained from blue pulses\footnote{UV-pulses saturating the high-gain are not yet
|
|---|
| 638 | available.}.
|
|---|
| 639 | \item "calibration\_weights4\_UV.dat'' with a window size of 4 FADC slices and in the low-gain the
|
|---|
| 640 | calibration weigths obtained from blue pulses\footnote{UV-pulses saturating the high-gain are not yet
|
|---|
| 641 | available.}.
|
|---|
| 642 | \item "cosmics\_weights\_logaintest.dat'' with a window size of 6 FADC slices and swapped high-gain and low-gain
|
|---|
| 643 | weights. This file is only used for stability tests.
|
|---|
| 644 | \item "cosmics\_weights4\_logaintest.dat'' with a window size of 4 FADC slices and swapped high-gain and low-gain
|
|---|
| 645 | weights. This file is only used for stability tests.
|
|---|
| 646 | \item "calibration\_weights\_UV\_logaintest.dat'' with a window size of 6 FADC slices and swapped high-gain and low-gain
|
|---|
| 647 | weights. This file is only used for stability tests.
|
|---|
| 648 | \item "calibration\_weights4\_UV\_logaintest.dat'' with a window size of 4 FADC slices and swapped high-gain and low-gain
|
|---|
| 649 | weights. This file is only used for stability tests.
|
|---|
| 650 | \item "calibration\_weights\_blue\_logaintest.dat'' with a window size of 6 FADC slices and swapped high-gain and low-gain
|
|---|
| 651 | weights. This file is only used for stability tests.
|
|---|
| 652 | \item "calibration\_weights4\_blue\_logaintest.dat'' with a window size of 4 FADC slices and swapped high-gain and low-gain
|
|---|
| 653 | weights. This file is only used for stability tests.
|
|---|
| 654 | \end{itemize}
|
|---|
| 655 | \end{description}
|
|---|
| 656 |
|
|---|
| 657 | \begin{figure}[htp]
|
|---|
| 658 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeDigitalFilter_5Led_UV.eps}
|
|---|
| 659 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeDigitalFilter_23Led_Blue.eps}
|
|---|
| 660 | \caption[Sketch calculated arrival times MExtractTimeAndChargeDigitalFilter]{%
|
|---|
| 661 | Sketch of the calculated arrival times for the extractor {\textit{MExtractTimeAndChargeDigitalFilter}}
|
|---|
| 662 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
|---|
| 663 | The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
|
|---|
| 664 | The pulse would be shifted half a slice to the right for an outer pixels. }
|
|---|
| 665 | \label{fig:dfsketch}
|
|---|
| 666 | \end{figure}
|
|---|
| 667 |
|
|---|
| 668 | \subsubsection{Real Fit to the Expected Pulse Shape }
|
|---|
| 669 |
|
|---|
| 670 | This extractor is not yet implemented as MARS-class...
|
|---|
| 671 | \par
|
|---|
| 672 | It fits the pulse shape to a Landau convoluted with a Gaussian using the following
|
|---|
| 673 | parameters:...
|
|---|
| 674 |
|
|---|
| 675 | \ldots {\it Hendrik, Wolfgang ... }
|
|---|
| 676 |
|
|---|
| 677 | \begin{figure}[h!]
|
|---|
| 678 | \begin{center}
|
|---|
| 679 | \includegraphics[totalheight=7cm]{probability_fit_0ns.eps}
|
|---|
| 680 | \end{center}
|
|---|
| 681 | \caption[Fit Probability.]{Probability of the fit with the input signal shape to the simulated FADC samples
|
|---|
| 682 | including electronics and NSB noise.} \label{fig:w_amp_MC_input_TDAS.eps}
|
|---|
| 683 | \end{figure}
|
|---|
| 684 |
|
|---|
| 685 |
|
|---|
| 686 |
|
|---|
| 687 | \subsection{Used Extractors for this Analysis}
|
|---|
| 688 |
|
|---|
| 689 | We tested in this TDAS the following parameterized extractors:
|
|---|
| 690 |
|
|---|
| 691 | \begin{description}
|
|---|
| 692 | \item[MExtractFixedWindow]: with the following intialization, if {\textit{maxbin}} defines the
|
|---|
| 693 | mean position of the high-gain FADC slice which carries the pulse maximum \footnote{The function
|
|---|
| 694 | {\textit{MExtractor::SetRange(higain first, higain last, logain first, logain last)}} sets the extraction
|
|---|
| 695 | range with the high gain start bin {\textit{higain first}} to (including) the last bin {\textit{higain last}}.
|
|---|
| 696 | Analoguously for the low gain extraction range. Note that in MARS, the low-gain FADC samples start with
|
|---|
| 697 | the index 0 again, thus {\textit{maxbin+0.5}} means in reality {\textit{maxbin+15+0.5}}. }
|
|---|
| 698 | :
|
|---|
| 699 | \begin{enumerate}
|
|---|
| 700 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}+0.5,{\textit{maxbin}}+3.5);
|
|---|
| 701 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
|---|
| 702 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
|---|
| 703 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+5,{\textit{maxbin}}-0.5,{\textit{maxbin}}+6.5);
|
|---|
| 704 | \item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+10,{\textit{maxbin}}-1.5,{\textit{maxbin}}+7.5);
|
|---|
| 705 | \suspend{enumerate}
|
|---|
| 706 | \item[MExtractFixedWindowSpline]: with the following initialization, if {\textit{maxbin}} defines the
|
|---|
| 707 | mean position of the high-gain FADC slice carrying the pulse maximum \footnote{The function
|
|---|
| 708 | {\textit{MExtractor::SetRange(higain first, higain last, logain first, logain last)}} sets the extraction
|
|---|
| 709 | range with the high gain start bin {\textit{higain first}} to (including) the last bin {\textit{higain last}}.
|
|---|
| 710 | Analoguously for the low gain extraction range. Note that in MARS, the low-gain FADC samples start with
|
|---|
| 711 | the index 0 again, thus {\textit{maxbin+0.5}} means in reality {\textit{maxbin+15+0.5}}.}:
|
|---|
| 712 | \resume{enumerate}
|
|---|
| 713 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+3,{\textit{maxbin}}+0.5,{\textit{maxbin}}+4.5);
|
|---|
| 714 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+5.5);
|
|---|
| 715 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+4,{\textit{maxbin}}-0.5,{\textit{maxbin}}+5.5);
|
|---|
| 716 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+6,{\textit{maxbin}}-0.5,{\textit{maxbin}}+7.5);
|
|---|
| 717 | \item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+11,{\textit{maxbin}}-1.5,{\textit{maxbin}}+8.5);
|
|---|
| 718 | \suspend{enumerate}
|
|---|
| 719 | \item[MExtractFixedWindowPeakSearch]: with the following initialization: \\
|
|---|
| 720 | SetRange(0,18,2,14); and:
|
|---|
| 721 | \resume{enumerate}
|
|---|
| 722 | \item SetWindows(2,2,2); SetOffsetFromWindow(0);
|
|---|
| 723 | \item SetWindows(4,4,2); SetOffsetFromWindow(1);
|
|---|
| 724 | \item SetWindows(4,6,4); SetOffsetFromWindow(0);
|
|---|
| 725 | \item SetWindows(6,6,4); SetOffsetFromWindow(1);
|
|---|
| 726 | \item SetWindows(8,8,4); SetOffsetFromWindow(1);
|
|---|
| 727 | \item SetWindows(14,10,4); SetOffsetFromWindow(2);
|
|---|
| 728 | \suspend{enumerate}
|
|---|
| 729 | \item[MExtractTimeAndChargeSlidingWindow]: with the following initialization: \\
|
|---|
| 730 | SetRange(0,18,2,14); and:
|
|---|
| 731 | \resume{enumerate}
|
|---|
| 732 | \item SetWindowSize(2,2);
|
|---|
| 733 | \item SetWindowSize(4,4);
|
|---|
| 734 | \item SetWindowSize(4,6);
|
|---|
| 735 | \item SetWindowSize(6,6);
|
|---|
| 736 | \item SetWindowSize(8,8);
|
|---|
| 737 | \item SetWindowSize(14,10);
|
|---|
| 738 | \suspend{enumerate}
|
|---|
| 739 | \item[MExtractTimeAndChargeSpline]: with the following initialization:
|
|---|
| 740 | \resume{enumerate}
|
|---|
| 741 | \item SetChargeType(MExtractTimeAndChargeSpline::kAmplitude); \\
|
|---|
| 742 | SetRange(0,10,4,11);
|
|---|
| 743 | \suspend{enumerate}
|
|---|
| 744 | SetChargeType(MExtractTimeAndChargeSpline::kIntegral); \\
|
|---|
| 745 | SetRange(0,18,2,14); \\
|
|---|
| 746 | and:
|
|---|
| 747 | \resume{enumerate}
|
|---|
| 748 | \item SetRiseTime(0.5); SetFallTime(0.5);
|
|---|
| 749 | \item SetRiseTime(0.5); SetFallTime(1.5);
|
|---|
| 750 | \item SetRiseTime(1.0); SetFallTime(3.0);
|
|---|
| 751 | \item SetRiseTime(1.5); SetFallTime(4.5);
|
|---|
| 752 | \suspend{enumerate}
|
|---|
| 753 | \item[MExtractTimeAndChargeDigitalFilter]: with the following initialization:
|
|---|
| 754 | \resume{enumerate}
|
|---|
| 755 | \item SetWeightsFile(``cosmics\_weights.dat'');
|
|---|
| 756 | \item SetWeightsFile(``cosmics\_weights4.dat'');
|
|---|
| 757 | \item SetWeightsFile(``calibration\_weights\_UV.dat'');
|
|---|
| 758 | \item SetWeightsFile(``calibration\_weights4\_UV.dat'');
|
|---|
| 759 | \item SetWeightsFile(``calibration\_weights\_blue.dat'');
|
|---|
| 760 | \item SetWeightsFile(``calibration\_weights4\_blue.dat'');
|
|---|
| 761 | \item SetWeightsFile(``cosmic\_weights\_logain6.dat'');
|
|---|
| 762 | \item SetWeightsFile(``cosmic\_weights\_logain4.dat'');
|
|---|
| 763 | \item SetWeightsFile(``calibration\_weights\_UV\_logaintest.dat'');
|
|---|
| 764 | \item SetWeightsFile(``calibration\_weights4\_UV\_logaintest.dat'');
|
|---|
| 765 | \item SetWeightsFile(``calibration\_weights\_blue\_logaintest.dat'');
|
|---|
| 766 | \item SetWeightsFile(``calibration\_weights4\_blue\_logaintest.dat'');
|
|---|
| 767 | \suspend{enumerate}
|
|---|
| 768 | \item[``Real Fit'']: (not yet implemented, one try)
|
|---|
| 769 | \resume{enumerate}
|
|---|
| 770 | \item Real Fit
|
|---|
| 771 | \end{enumerate}
|
|---|
| 772 | \end{description}
|
|---|
| 773 |
|
|---|
| 774 | Note that the extractors \#34 through \#39 are used only to test the stability of the extraction against
|
|---|
| 775 | changes in the pulse-shape.
|
|---|
| 776 |
|
|---|
| 777 | References: \cite{OF77,OF94}.
|
|---|
| 778 |
|
|---|
| 779 |
|
|---|
| 780 | %%% Local Variables:
|
|---|
| 781 | %%% mode: latex
|
|---|
| 782 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 783 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 784 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 785 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 786 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 787 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 788 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 789 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 790 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 791 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 792 | %%% End:
|
|---|