1 | \section{Signal Reconstruction Algorithms \label{sec:algorithms}}
|
---|
2 |
|
---|
3 | {\it Missing coding:
|
---|
4 | \begin{itemize}
|
---|
5 | \item Real fit to the expected pulse shape \ldots Hendrik, Wolfgang ???
|
---|
6 | \end{itemize}
|
---|
7 | }
|
---|
8 |
|
---|
9 | \subsection{Implementation of Signal Extractors in MARS}
|
---|
10 |
|
---|
11 | All signal extractor classes are stored in the MARS-directory {\textit{\bf msignal/}}.
|
---|
12 | There, the base classes {\textit{\bf MExtractor}}, {\textit{\bf MExtractTime}}, {\textit{\bf MExtractTimeAndCharge}} and
|
---|
13 | all individual extractors can be found. Figure~\ref{fig:extractorclasses} gives a sketch of the
|
---|
14 | inheritances of each class and what each class calculates.
|
---|
15 |
|
---|
16 | \begin{figure}[htp]
|
---|
17 | \includegraphics[width=0.99\linewidth]{ExtractorClasses.eps}
|
---|
18 | \caption{Sketch of the inheritances of three examplary MARS signal extractor classes:
|
---|
19 | MExtractFixedWindow, MExtractTimeFastSpline and MExtractTimeAndChargeDigitalFilter}
|
---|
20 | \label{fig:extractorclasses}
|
---|
21 | \end{figure}
|
---|
22 |
|
---|
23 | The following base classes for the extractor tasks are used:
|
---|
24 | \begin{description}
|
---|
25 | \item[MExtractor:\xspace] This class provides the basic data members equal for all extractors which are:
|
---|
26 | \begin{enumerate}
|
---|
27 | \item Global extraction ranges, parameterized by the variables
|
---|
28 | {\textit{\bf fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast}} and the function {\textit{\bf SetRange()}}.
|
---|
29 | The ranges always {\textit{\bf include}} the edge slices.
|
---|
30 | \item An internal variable {\textit{\bf fHiLoLast}} regulating the overlap of the desired high-gain
|
---|
31 | extraction range into the low-gain array.
|
---|
32 | \item The maximum possible FADC value, before the slice is declared as saturated, parameterized
|
---|
33 | by the variable {\textit{\bf fSaturationLimit}} (default:\,254).
|
---|
34 | \item The typical delay between high-gain and low-gain slices, expressed in FADC slices and parameterized
|
---|
35 | by the variable {\textit{\bf fOffsetLoGain}} (default:\,1.51)
|
---|
36 | \item Pointers to the used storage containers {\textit{\bf MRawEvtData, MRawRunHeader, MPedestalCam}}
|
---|
37 | and~{\textit{\bf MExtractedSignalCam}}, parameterized by the variables
|
---|
38 | {\textit{\bf fRawEvt, fRunHeader, fPedestals}} and~{\textit{\bf fSignals}}.
|
---|
39 | \item Names of the used storage containers to be searched for in the parameter list, parameterized
|
---|
40 | by the variables {\textit{\bf fNamePedestalCam}} and~{\textit{\bf fNameSignalCam}} (default: ``MPedestalCam''
|
---|
41 | and~''MExtractedSignalCam'').
|
---|
42 | \item The equivalent number of FADC samples, used for the calculation of the pedestal RMS and then the
|
---|
43 | number of photo-electrons with the F-Factor method (see eq.~\ref{eq:rmssubtraction} and
|
---|
44 | section~\ref{sec:photo-electrons}). This number is parameterized by the variables
|
---|
45 | {\textit{\bf fNumHiGainSamples}} and~{\textit{\bf fNumLoGainSamples}}.
|
---|
46 | \end{enumerate}
|
---|
47 |
|
---|
48 | {\textit {\bf MExtractor}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not overwritten.
|
---|
49 | It uses the following (virtual) functions, to be overwritten by the derived extractor class:
|
---|
50 |
|
---|
51 | \begin{enumerate}
|
---|
52 | \item void {\textit {\bf FindSignalHiGain}}(Byte\_t* firstused, Byte\_t* logain, Float\_t\& sum, Byte\_t\& sat) const
|
---|
53 | \item void {\textit {\bf FindSignalLoGain}}(Byte\_t* firstused, Float\_t\& sum, Byte\_t\& sat) const
|
---|
54 | \end{enumerate}
|
---|
55 |
|
---|
56 | where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
|
---|
57 | the pointer ``logain'' points to the beginning of the ``low-gain'' FADC slices array (to be used for
|
---|
58 | pulses reaching into the low-gain array) and the variables ``sum'' and ``sat'' get filled with the
|
---|
59 | extracted signal and the number of saturating FADC slices, respectively.
|
---|
60 | \par
|
---|
61 | The pedestals get subtracted automatically {\textit {\bf after}} execution of these two functions.
|
---|
62 |
|
---|
63 | \item[MExtractTime:\xspace] This class provides - additionally to those already declared in {\textit{\bf MExtractor}} -
|
---|
64 | the basic data members equal for all time extractors which are:
|
---|
65 | \begin{enumerate}
|
---|
66 | \item Pointer to the used storage container {\textit{\bf MArrivalTimeCam}}
|
---|
67 | parameterized by the variables
|
---|
68 | {\textit{\bf fArrTime}}.
|
---|
69 | \item The name of the used ``MArrivalTimeCam''-container to be searched for in the parameter list,
|
---|
70 | parameterized by the variables {\textit{\bf fNameTimeCam}} (default: ``MArrivalTimeCam'' ).
|
---|
71 | \end{enumerate}
|
---|
72 |
|
---|
73 | {\textit {\bf MExtractTime}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not
|
---|
74 | overwritten.
|
---|
75 | It uses the following (virtual) functions, to be overwritten by the derived extractor class:
|
---|
76 |
|
---|
77 | \begin{enumerate}
|
---|
78 | \item void {\textit {\bf FindTimeHiGain}}(Byte\_t* firstused, Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat, const MPedestlPix \&ped) const
|
---|
79 | \item void {\textit {\bf FindTimeLoGain}}(Byte\_t* firstused, Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat, const MPedestalPix \&ped) const
|
---|
80 | \end{enumerate}
|
---|
81 |
|
---|
82 | where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
|
---|
83 | and the variables ``time'', ``dtime'' and ``sat'' get filled with the
|
---|
84 | extracted arrival time, its error and the number of saturating FADC slices, respectively.
|
---|
85 | \par
|
---|
86 | The pedestals can be used for the arrival time extraction via the reference ``ped''.
|
---|
87 |
|
---|
88 | \item[MExtractTimeAndCharge:\xspace] This class provides - additionally to those already declared in
|
---|
89 | {\textit{\bf MExtractor}} and {\textit{\bf MExtractTime}} -
|
---|
90 | the basic data members equal for all time and charge extractors which are:
|
---|
91 | \begin{enumerate}
|
---|
92 | \item The actual extraction window sizes, parameterized by the variables
|
---|
93 | {\textit{\bf fWindowSizeHiGain}} and {\textit{\bf fWindowSizeLoGain}}.
|
---|
94 | \item The shift of the low-gain extraction range start w.r.t. to the found high-gain arrival
|
---|
95 | time, parameterized by the variable {\textit{\bf fLoGainStartShift}} (default: -2.8)
|
---|
96 | \end{enumerate}
|
---|
97 |
|
---|
98 | {\textit {\bf MExtractTimeAndCharge}} is able to loop over all events, if the {\textit{\bf Process()}}-function is not
|
---|
99 | overwritten.
|
---|
100 | It uses the following (virtual) functions, to be overwritten by the derived extractor class:
|
---|
101 |
|
---|
102 | \begin{enumerate}
|
---|
103 | \item void {\textit {\bf FindTimeAndChargeHiGain}}(Byte\_t* firstused, Byte\_t* logain, Float\_t\& sum, Float\_t\& dsum,
|
---|
104 | Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat,
|
---|
105 | const MPedestlPix \&ped, const Bool\_t abflag) const
|
---|
106 | \item void {\textit {\bf FindTimeAndChargeLoGain}}(Byte\_t* firstused, Float\_t\& sum, Float\_t\& dsum,
|
---|
107 | Float\_t\& time, Float\_t\& dtime, Byte\_t\& sat,
|
---|
108 | const MPedestalPix \&ped, const Bool\_t abflag) const
|
---|
109 | \end{enumerate}
|
---|
110 |
|
---|
111 | where the pointers ``firstused'' point to the first used FADC slice declared by the extraction ranges,
|
---|
112 | the pointer ``logain'' point to the beginning of the low-gain FADC slices array (to be used for
|
---|
113 | pulses reaching into the ``low-gain'' array),
|
---|
114 | the variables ``sum'', ``dsum'' get filled with the
|
---|
115 | extracted signal and its error. The variables ``time'', ``dtime'' and ``sat'' get filled with the
|
---|
116 | extracted arrival time, its error and the number of saturating FADC slices, respectively.
|
---|
117 | \par
|
---|
118 | The pedestals can be used for the extraction via the reference ``ped'', also the AB-flag is given
|
---|
119 | for AB-clock noise correction.
|
---|
120 | \end{description}
|
---|
121 |
|
---|
122 |
|
---|
123 | \subsection{Pure Signal Extractors}
|
---|
124 |
|
---|
125 | The pure signal extractors have in common that they reconstruct only the
|
---|
126 | charge, but not the arrival time. All treated extractors here derive from the MARS-base
|
---|
127 | class {\textit{\bf MExtractor}} which provides the following facilities:
|
---|
128 |
|
---|
129 | \begin{itemize}
|
---|
130 | \item The global extraction limits can be set from outside
|
---|
131 | \item FADC saturation is kept track of
|
---|
132 | \end{itemize}
|
---|
133 |
|
---|
134 | The following adjustable parameters have to be set from outside:
|
---|
135 | \begin{description}
|
---|
136 | \item[Global extraction limits:\xspace] Limits in between which the extractor is allowed
|
---|
137 | to extract the signal, for high gain and low gain, respectively.
|
---|
138 | \end{description}
|
---|
139 |
|
---|
140 | As the pulses jitter by about one FADC slice,
|
---|
141 | not every pulse lies exactly within the optimal limits, especially if one takes small
|
---|
142 | extraction windows.
|
---|
143 | Moreover, the readout position with respect to the trigger position has changed a couple
|
---|
144 | of times during last year, therefore a very careful adjustment of the extraction limits
|
---|
145 | is mandatory before using these extractors.
|
---|
146 |
|
---|
147 | \subsubsection{Fixed Window}
|
---|
148 |
|
---|
149 | This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindow}}.
|
---|
150 | It simply adds the FADC slice contents in the assigned ranges.
|
---|
151 | As it does not correct for the clock-noise, only an even number of samples is allowed.
|
---|
152 | Figure~\ref{fig:fixedwindowsketch} gives a sketch of the used extraction ranges for this
|
---|
153 | paper and two typical calibration pulses.
|
---|
154 |
|
---|
155 | \begin{figure}[htp]
|
---|
156 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindow_5Led_UV.eps}
|
---|
157 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindow_23Led_Blue.eps}
|
---|
158 | \caption[Sketch extraction ranges MExtractFixedWindow]{%
|
---|
159 | Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindow}}
|
---|
160 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
---|
161 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
---|
162 | \label{fig:fixedwindowsketch}
|
---|
163 | \end{figure}
|
---|
164 |
|
---|
165 |
|
---|
166 | \subsubsection{Fixed Window with Integrated Cubic Spline}
|
---|
167 |
|
---|
168 | This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindowSpline}}. It
|
---|
169 | uses a cubic spline algorithm, adapted from \cite{NUMREC} and integrates the
|
---|
170 | spline interpolated FADC slice values from a fixed extraction range. The edge slices are counted as half.
|
---|
171 | As it does not correct for the clock-noise, only an odd number of samples is allowed.
|
---|
172 | Figure~\ref{fig:fixedwindowsplinesketch} gives a sketch of the used extraction ranges for this
|
---|
173 | paper and two typical calibration pulses.
|
---|
174 |
|
---|
175 | \begin{figure}[htp]
|
---|
176 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindowSpline_5Led_UV.eps}
|
---|
177 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindowSpline_23Led_Blue.eps}
|
---|
178 | \caption[Sketch extraction ranges MExtractFixedWindowSpline]{%
|
---|
179 | Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindowSpline}}
|
---|
180 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
---|
181 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
---|
182 | \label{fig:fixedwindowsplinesketch}
|
---|
183 | \end{figure}
|
---|
184 |
|
---|
185 | \subsubsection{Fixed Window with Global Peak Search}
|
---|
186 |
|
---|
187 | This extractor is implemented in the MARS-class {\textit{\bf MExtractFixedWindowPeakSearch}}.
|
---|
188 | The basic idea of this extractor is to correct for coherent movements in arrival time for all pixels,
|
---|
189 | as e.g. caused by the trigger jitter.
|
---|
190 | In a first loop, it fixes a reference point defined as the highest sum of
|
---|
191 | consecutive non-saturating FADC slices in a (smaller) peak-search window.
|
---|
192 | \par
|
---|
193 | In a second loop over the pixels,
|
---|
194 | it adds the FADC contents starting from a pre-defined offset from the obtained peak-search window
|
---|
195 | over an extraction window of a pre-defined window size.
|
---|
196 | It loops twice over all pixels in every event, because it has to find the reference point, first.
|
---|
197 | As it does not correct for the clock-noise, only an even number of samples is allowed.
|
---|
198 | For a high intensity calibration run causing high-gain saturation in the whole camera, this
|
---|
199 | extractor apparently fails since only dead pixels are taken into account in the peak search
|
---|
200 | which cannot produce a saturated signal.
|
---|
201 | For this special case, we modified {\textit{\bf MExtractFixedWindowPeakSearch}}
|
---|
202 | such to define the peak search window as the one starting from the mean position of the first saturating slice.
|
---|
203 | \par
|
---|
204 | The following adjustable parameters have to be set from outside:
|
---|
205 | \begin{description}
|
---|
206 | \item[Peak Search Window:\xspace] Defines the ``sliding window'' size within which the peaking sum is
|
---|
207 | searched for (default: 4 slices)
|
---|
208 | \item[Offset from Window:\xspace] Defines the offset of the start of the extraction window w.r.t. the
|
---|
209 | starting point of the obtained peak search window (default: 1 slice)
|
---|
210 | \item[Low-Gain Peak shift:\xspace] Defines the shift in the low-gain with respect to the peak found
|
---|
211 | in the high-gain (default: 1 slice)
|
---|
212 | \end{description}
|
---|
213 |
|
---|
214 | Figure~\ref{fig:fixedwindowpeaksearchsketch} gives a sketch of the possible peak-search and extraction
|
---|
215 | window positions in two typical calibration pulses.
|
---|
216 |
|
---|
217 | \begin{figure}[htp]
|
---|
218 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindowPeakSearch_5Led_UV.eps}
|
---|
219 | \includegraphics[width=0.49\linewidth]{MExtractFixedWindowPeakSearch_23Led_Blue.eps}
|
---|
220 | \caption[Sketch extraction ranges MExtractFixedWindowPeakSearch]{%
|
---|
221 | Sketch of the extraction ranges for the extractor {\textit{\bf MExtractFixedWindowPeakSearch}}
|
---|
222 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
---|
223 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
---|
224 | \label{fig:fixedwindowpeaksearchsketch}
|
---|
225 | \end{figure}
|
---|
226 |
|
---|
227 | \subsection{Combined Extractors}
|
---|
228 |
|
---|
229 | The combined extractors have in common that they reconstruct the arrival time and
|
---|
230 | the charge at the same time and for the same pulse.
|
---|
231 | All treated combined extractors here derive from the MARS-base
|
---|
232 | class {\textit{\bf MExtractTimeAndCharge}} which itself derives from MExtractor and MExtractTime.
|
---|
233 | It provides the following facilities:
|
---|
234 |
|
---|
235 | \begin{itemize}
|
---|
236 | \item Only one loop over all pixels is performed.
|
---|
237 | \item The individual FADC slice values get the clock-noise-corrected pedestals immediately subtracted.
|
---|
238 | \item The low-gain extraction range is adapted dynamically, based on the computed arrival time
|
---|
239 | from the high-gain samples.
|
---|
240 | \item Extracted times from the low-gain samples get corrected for the intrinsic time delay of the low-gain
|
---|
241 | pulse.
|
---|
242 | \item The global extraction limits can be set from outside.
|
---|
243 | \item FADC saturation is kept track of.
|
---|
244 | \end{itemize}
|
---|
245 |
|
---|
246 | The following adjustable parameters have to be set from outside, additionally to those declared in the
|
---|
247 | base classes MExtractor and MExtractTime:
|
---|
248 |
|
---|
249 | \begin{description}
|
---|
250 | \item[Global extraction limits:\xspace] Limits in between which the extractor is allowed
|
---|
251 | to search. They are fixed by the extractor for the high-gain, but re-adjusted for
|
---|
252 | every event in the low-gain, depending on the arrival time found in the low-gain.
|
---|
253 | However, the dynamically adjusted window is not allowed to pass beyond the global
|
---|
254 | limits.
|
---|
255 | \item[Low-gain start shift:\xspace] Global shift between the computed high-gain arrival
|
---|
256 | time and the start of the low-gain extraction limit (corrected for the intrinsic time offset).
|
---|
257 | This variable tells where the extractor is allowed to start searching for the low-gain signal
|
---|
258 | if the high-gain arrival time is known. It avoids that the extractor gets confused by possible high-gain
|
---|
259 | signals leaking into the ``low-gain'' region (default: -2.8).
|
---|
260 | \end{description}
|
---|
261 |
|
---|
262 | \subsubsection{Sliding Window with Amplitude-Weighted Time}
|
---|
263 |
|
---|
264 | This extractor is implemented in the MARS-class {\textit{\bf MExtractTimeAndChargeSlidingWindow}}.
|
---|
265 | It extracts the signal from a sliding window of an adjustable size, for high-gain and low-gain
|
---|
266 | individually (default: 6 and 6). The signal is the one which maximizes the summed
|
---|
267 | (clock-noise and pedestal-corrected) consecutive FADC slice contents.
|
---|
268 | \par
|
---|
269 | The amplitude-weighted arrival time is calculated from the window with
|
---|
270 | the highest FADC slice contents integral using the following formula:
|
---|
271 |
|
---|
272 | \begin{equation}
|
---|
273 | t = \frac{\sum_{i=i_0}^{i_0+ws} s_i \cdot i}{\sum_{i=i_0}^{i_0t+ws} i}
|
---|
274 | \end{equation}
|
---|
275 | where $i$ denotes the FADC slice index, starting from $i_0$
|
---|
276 | window and running over a window of size $ws$. $s_i$ the clock-noise and
|
---|
277 | pedestal-corrected FADC slice contents at slice position $i$.
|
---|
278 | \par
|
---|
279 | The following adjustable parameters have to be set from outside:
|
---|
280 | \begin{description}
|
---|
281 | \item[Window sizes:\xspace] Independently for high-gain and low-gain (default: 6,6)
|
---|
282 | \end{description}
|
---|
283 |
|
---|
284 | \begin{figure}[htp]
|
---|
285 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSlidingWindow_5Led_UV.eps}
|
---|
286 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSlidingWindow_23Led_Blue.eps}
|
---|
287 | \caption[Sketch calculated arrival times MExtractTimeAndChargeSlidingWindow]{%
|
---|
288 | Sketch of the calculated arrival times for the extractor {\textit{\bf MExtractTimeAndChargeSlidingWindow}}
|
---|
289 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
---|
290 | The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
|
---|
291 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
---|
292 | \label{fig:slidingwindowsketch}
|
---|
293 | \end{figure}
|
---|
294 |
|
---|
295 | \subsubsection{Cubic Spline with Sliding Window or Amplitude Extraction}
|
---|
296 |
|
---|
297 | This extractor is implemented in the MARS-class {\textit{\bf MExtractTimeAndChargeSpline}}.
|
---|
298 | It interpolates the FADC contents using a cubic spline algorithm, adapted from \cite{NUMREC}.
|
---|
299 | In a second step, it searches for the position of the spline maximum. From then on, two
|
---|
300 | possibilities are offered:
|
---|
301 |
|
---|
302 | \begin{description}
|
---|
303 | \item[Extraction Type Amplitude:\xspace] The amplitude of the spline maximum is taken as charge signal
|
---|
304 | and the (precisee) position of the maximum is returned as arrival time. This type is faster, since it
|
---|
305 | performs not spline intergraion.
|
---|
306 | \item[Extraction Type Integral:\xspace] The integrated spline between maximum position minus
|
---|
307 | rise time (default: 1.5 slices) and maximum position plus fall time (default: 4.5 slices)
|
---|
308 | is taken as charge signal and the position of the half maximum left from the position of the maximum
|
---|
309 | is returned as arrival time (default).
|
---|
310 | The low-gain signal stretches the rise and fall time by a stretch factor (default: 1.5). This type
|
---|
311 | is slower, but yields more precise results (see section~\ref{sec:performance}) .
|
---|
312 | The charge integration resolution is set to 0.1 FADC slices.
|
---|
313 | \end{description}
|
---|
314 |
|
---|
315 | The following adjustable parameters have to be set from outside:
|
---|
316 |
|
---|
317 | \begin{description}
|
---|
318 | \item[Charge Extraction Type:\xspace] The amplitude of the spline maximum can be chosen while the position
|
---|
319 | of the maximum is returned as arrival time. This type is fast. \\
|
---|
320 | Otherwise, the integrated spline between maximum position minus rise time (default: 1.5 slices)
|
---|
321 | and maximum position plus fall time (default: 4.5 slices) is taken as signal and the position of the
|
---|
322 | half maximum is returned as arrival time (default).
|
---|
323 | The low-gain signal stretches the rise and fall time by a stretch factor (default: 1.5). This type
|
---|
324 | is slower, but more precise. The charge integration resolution is 0.1 FADC slices.
|
---|
325 | \item[Rise Time and Fall Time:\xspace] Can be adjusted for the integration charge extraction type.
|
---|
326 | \item[Resolution:\xspace] Defined as the maximum allowed difference between the calculated half maximum value and
|
---|
327 | the computed spline value at the arrival time position. Can be adjusted for the half-maximum time extraction
|
---|
328 | type.
|
---|
329 | \item[Low Gain Stretch:\xspace] Can be adjusted to account for the larger rise and fall times in the
|
---|
330 | low-gain as compared to the high gain pulses (default: 1.5)
|
---|
331 | \end{description}
|
---|
332 |
|
---|
333 | \begin{figure}[htp]
|
---|
334 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSpline_5Led_UV.eps}
|
---|
335 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeSpline_23Led_Blue.eps}
|
---|
336 | \caption[Sketch calculated arrival times MExtractTimeAndChargeSpline]{%
|
---|
337 | Sketch of the calculated arrival times for the extractor {\textit{\bf MExtractTimeAndChargeSpline}}
|
---|
338 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
---|
339 | The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
|
---|
340 | The pulse would be shifted half a slice to the right for an outer pixel. }
|
---|
341 | \label{fig:splinesketch}
|
---|
342 | \end{figure}
|
---|
343 |
|
---|
344 | \subsubsection{Digital Filter}
|
---|
345 |
|
---|
346 | This extractor is implemented in the MARS-class {\textit{\bf MExtractTimeAndChargeDigitalFilter}}.
|
---|
347 |
|
---|
348 |
|
---|
349 | The goal of the digital filtering method \cite{OF94,OF77} is to optimally reconstruct the amplitude and time origin of a signal with a known signal shape
|
---|
350 | from discrete measurements of the signal. Thereby, the noise contribution to the amplitude reconstruction is minimized.
|
---|
351 |
|
---|
352 | For the digital filtering method, three assumptions have to be made:
|
---|
353 |
|
---|
354 | \begin{itemize}
|
---|
355 | \item{The normalized signal shape has to be independent of the signal amplitude.}
|
---|
356 | \item{The noise properties have to be independent of the signal amplitude.}
|
---|
357 | \item{The noise auto-correlation matrix does not change its form significantly with time.}
|
---|
358 | \end{itemize}
|
---|
359 |
|
---|
360 | \par
|
---|
361 | \ldots {\textit{\bf IS THIS TRUE FOR MAGIC???? }} \ldots
|
---|
362 | \par
|
---|
363 |
|
---|
364 | Let $g(t)$ be the normalized signal shape, $E$ the signal amplitude and $\tau$ the time shift
|
---|
365 | of the physical signal from the predicted signal shape. Then the time dependence of the signal, $y(t)$, is given by:
|
---|
366 |
|
---|
367 | \begin{equation}
|
---|
368 | y(t)=E \cdot g(t-\tau) + b(t) \ ,
|
---|
369 | \end{equation}
|
---|
370 |
|
---|
371 | where $b(t)$ is the time-dependent noise contribution. For small time shifts $\tau$ (usually smaller than
|
---|
372 | one FADC slice width),
|
---|
373 | the time dependence can be linearized by the use of a Taylor expansion:
|
---|
374 |
|
---|
375 | \begin{equation} \label{shape_taylor_approx}
|
---|
376 | y(t)=E \cdot g(t) - E\tau \cdot \dot{g}(t) + b(t) \ ,
|
---|
377 | \end{equation}
|
---|
378 |
|
---|
379 | where $\dot{g}(t)$ is the time derivative of the signal shape. Discrete
|
---|
380 | measurements $y_i$ of the signal at times $t_i \ (i=1,...,n)$ have the form:
|
---|
381 |
|
---|
382 | \begin{equation}
|
---|
383 | y_i=E \cdot g_i- E\tau \cdot \dot{g}_i +b_i \ .
|
---|
384 | \end{equation}
|
---|
385 |
|
---|
386 | The correlation of the noise contributions at times $t_i$ and $t_j$ can be expressed in the
|
---|
387 | noise autocorrelation matrix $\boldsymbol{B}$:
|
---|
388 |
|
---|
389 | \begin{equation}
|
---|
390 | B_{ij} = \langle b_i b_j \rangle - \langle b_i \rangle \langle b_j
|
---|
391 | \rangle \ .
|
---|
392 | \label{eq:autocorr}
|
---|
393 | \end{equation}
|
---|
394 | %\equiv \langle b_i b_j \rangle with $\langle b_i \rangle = 0$.
|
---|
395 |
|
---|
396 | The signal amplitude $E$, and the product of amplitude and time shift $E \tau$, can be estimated from the given set of
|
---|
397 | measurements $\boldsymbol{y} = (y_1, ... ,y_n)$ by minimizing the excess noise contribution with respect to the known noise
|
---|
398 | auto-correlation:
|
---|
399 |
|
---|
400 | \begin{eqnarray}
|
---|
401 | \chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) (\boldsymbol{B}^{-1})_{ij} (y_j - E g_j-E\tau \dot{g}_j) \\
|
---|
402 | &=& (\boldsymbol{y} - E
|
---|
403 | \boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ ,
|
---|
404 | \end{eqnarray}
|
---|
405 |
|
---|
406 | where the last expression is matricial.
|
---|
407 | $\chi^2$ is a continuous function of $\tau$ and will have to be discretized itself for a
|
---|
408 | desired resolution.
|
---|
409 | $\chi^2$ is in principle independent from the noise auto-correlation matrix if always the correct noise level is calculated there.
|
---|
410 | In our case however, we decided to use one same matrix $\boldsymbol{B}$ for all levels of night-sky background since increases
|
---|
411 | in the noise level lead only to a multiplicative factor for all matrix elements and thus do not affect the position of the minimum of $\chi^2$.
|
---|
412 | The minimum of $\chi^2$ is obtained for:
|
---|
413 |
|
---|
414 | \begin{equation}
|
---|
415 | \frac{\partial \chi^2(E, E\tau)}{\partial E} = 0 \qquad \text{and} \qquad \frac{\partial \chi^2(E, E\tau)}{\partial(E\tau)} = 0 \ .
|
---|
416 | \end{equation}
|
---|
417 |
|
---|
418 |
|
---|
419 | Taking into account that $\boldsymbol{B}$ is a symmetric matrix, this leads to the following
|
---|
420 | two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude
|
---|
421 | and time offset $\overline{E\tau}$:
|
---|
422 |
|
---|
423 | \begin{eqnarray}
|
---|
424 | 0&=&-\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{y}
|
---|
425 | +\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}
|
---|
426 | +\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau}
|
---|
427 | \\
|
---|
428 | 0&=&-\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{y}
|
---|
429 | +\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}
|
---|
430 | +\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau} \ .
|
---|
431 | \end{eqnarray}
|
---|
432 |
|
---|
433 | Solving these equations one gets the following solutions:
|
---|
434 |
|
---|
435 | \begin{equation}
|
---|
436 | \overline{E}(\tau) = \boldsymbol{w}_{\text{amp}}^T (\tau)\boldsymbol{y} \quad \mathrm{with} \quad
|
---|
437 | \boldsymbol{w}_{\text{amp}}
|
---|
438 | = \frac{ (\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \boldsymbol{g} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}}}
|
---|
439 | {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ ,
|
---|
440 | \end{equation}
|
---|
441 |
|
---|
442 | \begin{equation}
|
---|
443 | \overline{E\tau}(\tau)= \boldsymbol{w}_{\text{time}}^T(\tau) \boldsymbol{y} \quad
|
---|
444 | \mathrm{with} \quad \boldsymbol{w}_{\text{time}}
|
---|
445 | = \frac{ ({\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} {\boldsymbol{g}}}
|
---|
446 | {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ .
|
---|
447 | \end{equation}
|
---|
448 |
|
---|
449 | Thus $\overline{E}$ and $\overline{E\tau}$ are given by a weighted sum of the discrete measurements $y_i$
|
---|
450 | with the digital filtering weights for the amplitude, $w_{\text{amp}}(\tau)$, and time shift, $w_{\text{time}}(\tau)$
|
---|
451 | where the time dependency gets discretized once again leading to a set of weights samples which themselves depend on the
|
---|
452 | discretized time $\tau$.
|
---|
453 | \par
|
---|
454 | Note the remaining time dependency of the two weights samples which follow from the dependency of $\boldsymbol{g}$ and
|
---|
455 | $\dot{\boldsymbol{g}}$ on the position of the pulse with respect to the FADC bin positions.
|
---|
456 | \par
|
---|
457 | Because of the truncation of the Taylor series in equation (\ref{shape_taylor_approx}) the above results are
|
---|
458 | only valid for vanishing time offsets $\tau$. For non-zero time offsets one has to iterate the problem using
|
---|
459 | the time shifted signal shape $g(t-\tau)$.
|
---|
460 |
|
---|
461 | The covariance matrix $\boldsymbol{V}$ of $\overline{E}$ and $\overline{E\tau}$ is given by:
|
---|
462 |
|
---|
463 | \begin{equation}
|
---|
464 | \left(\boldsymbol{V}^{-1}\right)_{i,j}
|
---|
465 | =\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad
|
---|
466 | \text{with} \quad \alpha_i,\alpha_j \in \{E, E\tau\} \ .
|
---|
467 | \end{equation}
|
---|
468 |
|
---|
469 | The expected contribution of the noise to the estimated amplitude, $\sigma_E$, is:
|
---|
470 |
|
---|
471 | \begin{equation}\label{of_noise}
|
---|
472 | \sigma_E^2=\boldsymbol{V}_{E,E}
|
---|
473 | =\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}
|
---|
474 | {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
|
---|
475 | \end{equation}
|
---|
476 |
|
---|
477 | The expected contribution of the noise to the estimated timing, $\sigma_{\tau}$, is:
|
---|
478 |
|
---|
479 | \begin{equation}\label{of_noise_time}
|
---|
480 | E^2 \cdot \sigma_{\tau}^2=\boldsymbol{V}_{E\tau,E\tau}
|
---|
481 | =\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}
|
---|
482 | {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
|
---|
483 | \end{equation}
|
---|
484 |
|
---|
485 | For the MAGIC signals, as implemented in the MC simulations, a pedestal RMS of a single FADC slice of 4 FADC counts introduces an error in the
|
---|
486 | reconstructed signal and time of:
|
---|
487 |
|
---|
488 | \begin{equation}\label{of_noise}
|
---|
489 | \sigma_E \approx 8.3 \ \mathrm{FADC\ counts} \qquad \sigma_{\tau} \approx \frac{6.5\ \Delta T_{\mathrm{FADC}}}{(E\ /\ \mathrm{FADC\ counts})} \ ,
|
---|
490 | \end{equation}
|
---|
491 |
|
---|
492 | \par
|
---|
493 | \ldots {\textit{\bf CALCULATE THESE NUMBERS FOR 6 SLICES! }} \ldots
|
---|
494 | \par
|
---|
495 |
|
---|
496 | where $\Delta T_{\mathrm{FADC}} = 3.33$ ns is the sampling interval of the MAGIC FADCs.
|
---|
497 |
|
---|
498 |
|
---|
499 | For an IACT there are two types of background noise. On the one hand, there is the constantly present
|
---|
500 | electronics noise,
|
---|
501 | on the other hand, the light of the night sky introduces a sizeable background noise to the measurement of
|
---|
502 | Cherenkov photons from air showers.
|
---|
503 |
|
---|
504 | The electronics noise is largely white, uncorrelated in time. The noise from the night sky background photons
|
---|
505 | is the superposition of the
|
---|
506 | detector response to single photo electrons following a Poisson distribution in time.
|
---|
507 | Figure \ref{fig:noise_autocorr_allpixels} shows the noise
|
---|
508 | autocorrelation matrix for an open camera. The large noise autocorrelation in time of the current FADC
|
---|
509 | system is due to the pulse shaping with a shaping constant of 6 ns.
|
---|
510 |
|
---|
511 | In general, the amplitude and time weights, $\boldsymbol{w}_{\text{amp}}$ and $\boldsymbol{w}_{\text{time}}$, depend on the pulse shape, the
|
---|
512 | derivative of the pulse shape and the noise autocorrelation. In the high gain samples the correlated night sky background noise dominates over
|
---|
513 | the white electronics noise. Thus different noise levels just cause the noise autocorrelation matrix $\boldsymbol{B}$ to change by a same factor,
|
---|
514 | which cancels out in the weights calculation. Thus in the high gain the weights are to a very good approximation independent of the night
|
---|
515 | sky background noise level.
|
---|
516 |
|
---|
517 | Contrary to that in the low gain samples ... .
|
---|
518 | \ldots
|
---|
519 | \ldots {\textit{\bf SITUATION FOR LOW-GAIN SAMPLES! }} \ldots
|
---|
520 | \par
|
---|
521 |
|
---|
522 |
|
---|
523 |
|
---|
524 | \begin{figure}[h!]
|
---|
525 | \begin{center}
|
---|
526 | \includegraphics[totalheight=7cm]{noise_autocorr_AB_36038_TDAS.eps}
|
---|
527 | \end{center}
|
---|
528 | \caption[Noise autocorrelation one pixel.]{Noise autocorrelation
|
---|
529 | matrix $\boldsymbol{B}$ for open camera including the noise due to night sky background fluctuations
|
---|
530 | for one single pixel (obtained from 1000 events).}
|
---|
531 | \label{fig:noise_autocorr_1pix}
|
---|
532 | \end{figure}
|
---|
533 |
|
---|
534 | \begin{figure}[htp]
|
---|
535 | \begin{center}
|
---|
536 | \includegraphics[totalheight=7cm]{noise_38995_smallNSB_all396.eps}
|
---|
537 | \includegraphics[totalheight=7cm]{noise_39258_largeNSB_all396.eps}
|
---|
538 | \includegraphics[totalheight=7cm]{noise_small_over_large.eps}
|
---|
539 | \end{center}
|
---|
540 | \caption[Noise autocorrelation average all pixels.]{Noise autocorrelation
|
---|
541 | matrix $\boldsymbol{B}$ for open camera and averaged over all pixels. The top figure shows $\boldsymbol{B}$
|
---|
542 | obtained with camera pointing off the galactic plane (and low night sky background fluctuations).
|
---|
543 | The central figure shows $\boldsymbol{B}$ with the camera pointing into the galactic plane
|
---|
544 | (high night sky background) and the
|
---|
545 | bottom plot shows the ratio between both. One can see that the entries of $\boldsymbol{B}$ do not
|
---|
546 | simply scale with the amount of night sky background.}
|
---|
547 | \label{fig:noise_autocorr_allpixels}
|
---|
548 | \end{figure}
|
---|
549 |
|
---|
550 | Using the average reconstructed pulpo pulse shape, as shown in figure \ref{fig:pulpo_shape_low}, and the
|
---|
551 | reconstructed noise autocorrelation matrix from a pedestal run
|
---|
552 |
|
---|
553 | \par
|
---|
554 | \ldots {\textit{\bf WHICH RUN (RUN NUMBER, WHICH NSB?, WHICH PIXELS ??}} \ldots
|
---|
555 | \par
|
---|
556 |
|
---|
557 | with random triggers, the digital filter
|
---|
558 | weights are computed. Figures \ref{fig:w_time_MC_input_TDAS} and \ref{fig:w_amp_MC_input_TDAS} show the
|
---|
559 | parameterization of the amplitude and timing weights for the MC pulse shape as a function of the ...
|
---|
560 |
|
---|
561 | \par
|
---|
562 | \ldots {\textit{\bf MISSING END OF SENTENCE }} \ldots
|
---|
563 | \par
|
---|
564 |
|
---|
565 | \begin{figure}[h!]
|
---|
566 | \begin{center}
|
---|
567 | \includegraphics[totalheight=7cm]{w_time_MC_input_TDAS.eps}
|
---|
568 | \end{center}
|
---|
569 | \caption[Time weights.]{Time weights $w_{\mathrm{time}}(t_0) \ldots w_{\mathrm{time}}(t_5)$ for a window size of 6 FADC slices for the pulse shape
|
---|
570 | used in the MC simulations. The first weight $w_{\mathrm{time}}(t_0)$ is plotted as a function of the relative time $t_{\text{rel}}$ the trigger and the
|
---|
571 | FADC clock in the range $[-0.5,0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5,1.5[ \ T_{\text{ADC}}$ and so on. A binning resolution
|
---|
572 | of $0.1\,T_{\text{ADC}}$ has been chosen.} \label{fig:w_time_MC_input_TDAS}
|
---|
573 | \end{figure}
|
---|
574 |
|
---|
575 | \begin{figure}[h!]
|
---|
576 | \begin{center}
|
---|
577 | \includegraphics[totalheight=7cm]{w_amp_MC_input_TDAS.eps}
|
---|
578 | \end{center}
|
---|
579 | \caption[Amplitude weights.]{Amplitude weights $w_{\mathrm{amp}}(t_0) \ldots w_{\mathrm{amp}}(t_5)$ for a window size of 6 FADC slices for the
|
---|
580 | pulse shape used in the MC simulations. The first weight $w_{\mathrm{amp}}(t_0)$ is plotted as a function of the relative time $t_{\text{rel}}$
|
---|
581 | the trigger and the FADC clock in the range $[-0.5,0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5,1.5[ \ T_{\text{ADC}}$ and so on.
|
---|
582 | A binning resolution of $0.1\, T_{\text{ADC}}$ has been chosen.} \label{fig:w_amp_MC_input_TDAS}
|
---|
583 | \end{figure}
|
---|
584 |
|
---|
585 | In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$
|
---|
586 | and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice.
|
---|
587 | In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed using a window of $n$ slices:
|
---|
588 |
|
---|
589 | \begin{equation}
|
---|
590 | e_{i_0}=\sum_{i=i_0}^{i_0+n-1} w_{\mathrm{amp}}(t_i)y(t_{i+i_0}) \qquad (e\tau)_{i_0}=\sum_{i=i_0}^{i_0+n-1} w_{\mathrm{time}}(t_i)y(t_{i+i_0})
|
---|
591 | \end{equation}
|
---|
592 |
|
---|
593 | for all possible signal start slices $i_0$. Let $i_0^*$ be the signal start slice with the largest $e_{i_0}$.
|
---|
594 | Then in a second step the timing offset $\tau$ is calculated:
|
---|
595 |
|
---|
596 | \begin{equation}
|
---|
597 | \tau=\frac{(e\tau)_{i_0^*}}{e_{i_0^*}}
|
---|
598 | \end{equation}
|
---|
599 |
|
---|
600 | and the weights iterated:
|
---|
601 |
|
---|
602 | \begin{equation}
|
---|
603 | E=\sum_{i=i_0^*}^{i_0^*+n-1} w_{\mathrm{amp}}(t_i - \tau)y(t_{i+i_0^*}) \qquad
|
---|
604 | E \theta=\sum_{i=i_0^*}^{i_0^*+n-1} w_{\mathrm{time}}(t_i - \tau)y(t_{i+i_0^*}) \ .
|
---|
605 | \end{equation}
|
---|
606 |
|
---|
607 | The reconstructed signal is then taken to be $E$ and the reconstructed arrival time $t_{\text{arrival}}$ is
|
---|
608 |
|
---|
609 | \begin{equation}
|
---|
610 | t_{\text{arrival}} = i_0^* + \tau + \theta \ .
|
---|
611 | \end{equation}
|
---|
612 |
|
---|
613 |
|
---|
614 |
|
---|
615 | % This does not apply for MAGIC as the LONs are giving always a correlated noise (in addition to the artificial shaping)
|
---|
616 |
|
---|
617 | %In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is:
|
---|
618 |
|
---|
619 | %\begin{equation}
|
---|
620 | %\boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ ,
|
---|
621 | %\end{equation}
|
---|
622 |
|
---|
623 | %where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes:
|
---|
624 |
|
---|
625 |
|
---|
626 | %\begin{equation}
|
---|
627 | %\frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ .
|
---|
628 | %\end{equation}
|
---|
629 |
|
---|
630 |
|
---|
631 | \begin{figure}[h!]
|
---|
632 | \begin{center}
|
---|
633 | \includegraphics[totalheight=7cm]{amp_sliding.eps}
|
---|
634 | \includegraphics[totalheight=7cm]{time_sliding.eps}
|
---|
635 | \end{center}
|
---|
636 | \caption[Digital filter weights applied.]{Digital filter weights applied to the recorded FADC time slices of
|
---|
637 | one calibration pulse. The left plot shows the result of the applied amplitude weights
|
---|
638 | $e(t_0)=\sum_{i=0}^{i=n-1} w_{\mathrm{amp}}(t_0+i \cdot T_{\text{ADC}})y(t_0+i \cdot T_{\text{ADC}})$ and
|
---|
639 | the right plot shows the result of the applied timing weights
|
---|
640 | $e\tau(t_0)=\sum_{i=0}^{i=n-1} w_{\mathrm{time}}(t_0+i \cdot T_{\text{ADC}})y(t_0+i \cdot T_{\text{ADC}})$ .}
|
---|
641 | \label{fig:amp_sliding}
|
---|
642 | \end{figure}
|
---|
643 |
|
---|
644 |
|
---|
645 | \ldots
|
---|
646 | \textit {\bf FIGURE~\ref{fig:shape_fit_TDAS} shows what???}
|
---|
647 | \ldots
|
---|
648 |
|
---|
649 | Figure \ref{fig:shape_fit_TDAS} shows the FADC slices of a single MC event together with the result of a full
|
---|
650 | fit of the input MC pulse shape to the simulated FADC samples together with the result of the numerical fit
|
---|
651 | using the digital filter.
|
---|
652 |
|
---|
653 |
|
---|
654 | \begin{figure}[h!]
|
---|
655 | \begin{center}
|
---|
656 | \includegraphics[totalheight=7cm]{shape_fit_TDAS.eps}
|
---|
657 | \end{center}
|
---|
658 | \caption[Shape fit.]{Full fit to the MC pulse shape with the MC input shape and a numerical fit using the
|
---|
659 | digital filter.} \label{fig:shape_fit_TDAS}
|
---|
660 | \end{figure}
|
---|
661 |
|
---|
662 |
|
---|
663 | \ldots {\it Hendrik ... }
|
---|
664 |
|
---|
665 | The following free adjustable parameters have to be set from outside:
|
---|
666 |
|
---|
667 | \begin{description}
|
---|
668 | \item[Weights File:\xspace] An ascii-file containing the weights, the binning resolution and
|
---|
669 | the window size. Currently, the following weight files have been created:
|
---|
670 | \begin{itemize}
|
---|
671 | \item "cosmics\_weights.dat'' with a window size of 6 FADC slices
|
---|
672 | \item "cosmics\_weights4.dat'' with a window size of 4 FADC slices
|
---|
673 | \item "calibration\_weights\_blue.dat'' with a window size of 6 FADC slices
|
---|
674 | \item "calibration\_weights4\_blue.dat'' with a window size of 4 FADC slices
|
---|
675 | \item "calibration\_weights\_UV.dat'' with a window size of 6 FADC slices and in the low-gain the
|
---|
676 | calibration weigths obtained from blue pulses\footnote{UV-pulses saturating the high-gain are not yet
|
---|
677 | available.}.
|
---|
678 | \item "calibration\_weights4\_UV.dat'' with a window size of 4 FADC slices and in the low-gain the
|
---|
679 | calibration weigths obtained from blue pulses\footnote{UV-pulses saturating the high-gain are not yet
|
---|
680 | available.}.
|
---|
681 | \item "cosmics\_weights\_logaintest.dat'' with a window size of 6 FADC slices and swapped high-gain and low-gain
|
---|
682 | weights. This file is only used for stability tests.
|
---|
683 | \item "cosmics\_weights4\_logaintest.dat'' with a window size of 4 FADC slices and swapped high-gain and low-gain
|
---|
684 | weights. This file is only used for stability tests.
|
---|
685 | \item "calibration\_weights\_UV\_logaintest.dat'' with a window size of 6 FADC slices and swapped high-gain and low-gain
|
---|
686 | weights. This file is only used for stability tests.
|
---|
687 | \item "calibration\_weights4\_UV\_logaintest.dat'' with a window size of 4 FADC slices and swapped high-gain and low-gain
|
---|
688 | weights. This file is only used for stability tests.
|
---|
689 | \item "calibration\_weights\_blue\_logaintest.dat'' with a window size of 6 FADC slices and swapped high-gain and low-gain
|
---|
690 | weights. This file is only used for stability tests.
|
---|
691 | \item "calibration\_weights4\_blue\_logaintest.dat'' with a window size of 4 FADC slices and swapped high-gain and low-gain
|
---|
692 | weights. This file is only used for stability tests.
|
---|
693 | \end{itemize}
|
---|
694 | \end{description}
|
---|
695 |
|
---|
696 | \begin{figure}[htp]
|
---|
697 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeDigitalFilter_5Led_UV.eps}
|
---|
698 | \includegraphics[width=0.49\linewidth]{MExtractTimeAndChargeDigitalFilter_23Led_Blue.eps}
|
---|
699 | \caption[Sketch calculated arrival times MExtractTimeAndChargeDigitalFilter]{%
|
---|
700 | Sketch of the calculated arrival times for the extractor {\textit{MExtractTimeAndChargeDigitalFilter}}
|
---|
701 | for two typical calibration pulses (pedestals have been subtracted) and a typical inner pixel.
|
---|
702 | The extraction window sizes modify the position of the (amplitude-weighted) mean FADC-slices slightly.
|
---|
703 | The pulse would be shifted half a slice to the right for an outer pixels. }
|
---|
704 | \label{fig:dfsketch}
|
---|
705 | \end{figure}
|
---|
706 |
|
---|
707 | \subsubsection{Digital Filter with Global Peak Search}
|
---|
708 |
|
---|
709 | This extractor is implemented in the MARS-class {\textit{\bf MExtractTimeAndChargeDigitalFilterPeakSearch}}.
|
---|
710 |
|
---|
711 | The idea of this extractor is to combine {\textit{\bf MExtractFixedWindowPeakSearch}} and
|
---|
712 | {\textit{\bf MExtractTimeAndChargeDigitalFilter}} in order to correct for coherent movements in arrival time
|
---|
713 | for all pixels and still use the digital filter fit capabilities.
|
---|
714 | \par
|
---|
715 |
|
---|
716 | In a first loop, it fixes a reference point defined as the highest sum of
|
---|
717 | consecutive non-saturating FADC slices in a (smaller) peak-search window.
|
---|
718 | \par
|
---|
719 | In a second loop over the pixels,
|
---|
720 | it uses the digital filter algorithm within a reduced extraction window.
|
---|
721 | It loops twice over all pixels in every event, because it has to find the reference point, first.
|
---|
722 |
|
---|
723 | As in the case of {\textit{\bf MExtractFixedWindowPeakSearch}}, for a high intensity calibration run
|
---|
724 | causing high-gain saturation in the whole camera, this
|
---|
725 | extractor apparently fails since only dead pixels
|
---|
726 | are taken into account in the peak search which cannot produce a saturated signal.
|
---|
727 |
|
---|
728 | \par
|
---|
729 | For this special case, the extractor then defines the peak search window
|
---|
730 | as the one starting from the mean position of the first saturating slice.
|
---|
731 | \par
|
---|
732 | The following adjustable parameters have to be set from outside, additionally to the ones to be
|
---|
733 | set in {\textit{\bf MExtractTimeAndChargeDigitalFilter}}:
|
---|
734 | \begin{description}
|
---|
735 | \item[Peak Search Window:\xspace] Defines the ``sliding window'' size within which the peaking sum is
|
---|
736 | searched for (default: 2 slices)
|
---|
737 | \item[Offset left from Peak:\xspace] Defines the left offset of the start of the extraction window w.r.t. the
|
---|
738 | starting point of the obtained peak search window (default: 3 slices)
|
---|
739 | \item[Offset right from Peak:\xspace] Defines the right offset of the of the extraction window w.r.t. the
|
---|
740 | starting point of the obtained peak search window (default: 3 slices)
|
---|
741 | \item[Limit for high gain failure events:\xspace] Defines the limit of the number of events which failed
|
---|
742 | to be in the high-gain window before the run is rejected.
|
---|
743 | \item[Limit for low gain failure events:\xspace] Defines the limit of the number of events which failed
|
---|
744 | to be in the low-gain window before the run is rejected.
|
---|
745 | \end{description}
|
---|
746 |
|
---|
747 | In principle, the ``offsets'' can be chosen very small, because both showers and calibration pulses spread
|
---|
748 | over a very small time interval, typically less than one FADC slice. However, the MAGIC DAQ produces
|
---|
749 | artificial jumps of two FADC slices from time to time\footnote{in 5\% of the events per pixel in December 2004},
|
---|
750 | so the 3 slices are made in order not to reject these pixels already with the extractor.
|
---|
751 |
|
---|
752 | \subsubsection{Real Fit to the Expected Pulse Shape }
|
---|
753 |
|
---|
754 | This extractor is not yet implemented as MARS-class...
|
---|
755 | \par
|
---|
756 | It fits the pulse shape to a Landau convoluted with a Gaussian using the following
|
---|
757 | parameters:...
|
---|
758 |
|
---|
759 | \ldots {\it Hendrik, Wolfgang ... }
|
---|
760 |
|
---|
761 | \begin{figure}[h!]
|
---|
762 | \begin{center}
|
---|
763 | \includegraphics[totalheight=7cm]{probability_fit_0ns.eps}
|
---|
764 | \end{center}
|
---|
765 | \caption[Fit Probability.]{Probability of the fit with the input signal shape to the simulated FADC samples
|
---|
766 | including electronics and NSB noise.} \label{fig:w_amp_MC_input_TDAS.eps}
|
---|
767 | \end{figure}
|
---|
768 |
|
---|
769 |
|
---|
770 |
|
---|
771 | \subsection{Used Extractors for this Analysis}
|
---|
772 |
|
---|
773 | We tested in this TDAS the following parameterized extractors:
|
---|
774 |
|
---|
775 | \begin{description}
|
---|
776 | \item[MExtractFixedWindow]: with the following intialization, if {\textit{maxbin}} defines the
|
---|
777 | mean position of the high-gain FADC slice which carries the pulse maximum \footnote{The function
|
---|
778 | {\textit{MExtractor::SetRange(higain first, higain last, logain first, logain last)}} sets the extraction
|
---|
779 | range with the high gain start bin {\textit{higain first}} to (including) the last bin {\textit{higain last}}.
|
---|
780 | Analoguously for the low gain extraction range. Note that in MARS, the low-gain FADC samples start with
|
---|
781 | the index 0 again, thus {\textit{maxbin+0.5}} means in reality {\textit{maxbin+15+0.5}}. }
|
---|
782 | :
|
---|
783 | \begin{enumerate}
|
---|
784 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}+0.5,{\textit{maxbin}}+3.5);
|
---|
785 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+2,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
---|
786 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+4.5);
|
---|
787 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+5,{\textit{maxbin}}-0.5,{\textit{maxbin}}+6.5);
|
---|
788 | \item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+10,{\textit{maxbin}}-1.5,{\textit{maxbin}}+7.5);
|
---|
789 | \suspend{enumerate}
|
---|
790 | \item[MExtractFixedWindowSpline]: with the following initialization, if {\textit{maxbin}} defines the
|
---|
791 | mean position of the high-gain FADC slice carrying the pulse maximum \footnote{The function
|
---|
792 | {\textit{MExtractor::SetRange(higain first, higain last, logain first, logain last)}} sets the extraction
|
---|
793 | range with the high gain start bin {\textit{higain first}} to (including) the last bin {\textit{higain last}}.
|
---|
794 | Analoguously for the low gain extraction range. Note that in MARS, the low-gain FADC samples start with
|
---|
795 | the index 0 again, thus {\textit{maxbin+0.5}} means in reality {\textit{maxbin+15+0.5}}.}:
|
---|
796 | \resume{enumerate}
|
---|
797 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+3,{\textit{maxbin}}+0.5,{\textit{maxbin}}+4.5);
|
---|
798 | \item SetRange({\textit{maxbin}}-1,{\textit{maxbin}}+3,{\textit{maxbin}}-0.5,{\textit{maxbin}}+5.5);
|
---|
799 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+4,{\textit{maxbin}}-0.5,{\textit{maxbin}}+5.5);
|
---|
800 | \item SetRange({\textit{maxbin}}-2,{\textit{maxbin}}+6,{\textit{maxbin}}-0.5,{\textit{maxbin}}+7.5);
|
---|
801 | \item SetRange({\textit{maxbin}}-3,{\textit{maxbin}}+11,{\textit{maxbin}}-1.5,{\textit{maxbin}}+8.5);
|
---|
802 | \suspend{enumerate}
|
---|
803 | \item[MExtractFixedWindowPeakSearch]: with the following initialization: \\
|
---|
804 | SetRange(0,18,2,14); and:
|
---|
805 | \resume{enumerate}
|
---|
806 | \item SetWindows(2,2,2); SetOffsetFromWindow(0);
|
---|
807 | \item SetWindows(4,4,2); SetOffsetFromWindow(1);
|
---|
808 | \item SetWindows(4,6,4); SetOffsetFromWindow(0);
|
---|
809 | \item SetWindows(6,6,4); SetOffsetFromWindow(1);
|
---|
810 | \item SetWindows(8,8,4); SetOffsetFromWindow(1);
|
---|
811 | \item SetWindows(14,10,4); SetOffsetFromWindow(2);
|
---|
812 | \suspend{enumerate}
|
---|
813 | \item[MExtractTimeAndChargeSlidingWindow]: with the following initialization: \\
|
---|
814 | SetRange(0,18,2,14); and:
|
---|
815 | \resume{enumerate}
|
---|
816 | \item SetWindowSize(2,2);
|
---|
817 | \item SetWindowSize(4,4);
|
---|
818 | \item SetWindowSize(4,6);
|
---|
819 | \item SetWindowSize(6,6);
|
---|
820 | \item SetWindowSize(8,8);
|
---|
821 | \item SetWindowSize(14,10);
|
---|
822 | \suspend{enumerate}
|
---|
823 | \item[MExtractTimeAndChargeSpline]: with the following initialization:
|
---|
824 | \resume{enumerate}
|
---|
825 | \item SetChargeType(MExtractTimeAndChargeSpline::kAmplitude); \\
|
---|
826 | SetRange(0,10,4,11);
|
---|
827 | \suspend{enumerate}
|
---|
828 | SetChargeType(MExtractTimeAndChargeSpline::kIntegral); \\
|
---|
829 | SetRange(0,18,2,14); \\
|
---|
830 | and:
|
---|
831 | \resume{enumerate}
|
---|
832 | \item SetRiseTime(0.5); SetFallTime(0.5);
|
---|
833 | \item SetRiseTime(0.5); SetFallTime(1.5);
|
---|
834 | \item SetRiseTime(1.0); SetFallTime(3.0);
|
---|
835 | \item SetRiseTime(1.5); SetFallTime(4.5);
|
---|
836 | \suspend{enumerate}
|
---|
837 | \item[MExtractTimeAndChargeDigitalFilter]: with the following initialization:
|
---|
838 | \resume{enumerate}
|
---|
839 | \item SetWeightsFile(``cosmics\_weights.dat'');
|
---|
840 | \item SetWeightsFile(``cosmics\_weights4.dat'');
|
---|
841 | \item SetWeightsFile(``calibration\_weights\_UV.dat'');
|
---|
842 | \item SetWeightsFile(``calibration\_weights4\_UV.dat'');
|
---|
843 | \item SetWeightsFile(``calibration\_weights\_blue.dat'');
|
---|
844 | \item SetWeightsFile(``calibration\_weights4\_blue.dat'');
|
---|
845 | \item SetWeightsFile(``cosmic\_weights\_logain6.dat'');
|
---|
846 | \item SetWeightsFile(``cosmic\_weights\_logain4.dat'');
|
---|
847 | \item SetWeightsFile(``calibration\_weights\_UV\_logaintest.dat'');
|
---|
848 | \item SetWeightsFile(``calibration\_weights4\_UV\_logaintest.dat'');
|
---|
849 | \item SetWeightsFile(``calibration\_weights\_blue\_logaintest.dat'');
|
---|
850 | \item SetWeightsFile(``calibration\_weights4\_blue\_logaintest.dat'');
|
---|
851 | \suspend{enumerate}
|
---|
852 | \item[MExtractTimeAndChargeDigitalFilterPeakSearch]: with the following initialization:
|
---|
853 | \resume{enumerate}
|
---|
854 | \item SetWeightsFile(``calibration\_weights\_UV.dat'');
|
---|
855 | \suspend{enumerate}
|
---|
856 | \item[``Real Fit'']: (not yet implemented, one try)
|
---|
857 | \resume{enumerate}
|
---|
858 | \item Real Fit
|
---|
859 | \end{enumerate}
|
---|
860 | \end{description}
|
---|
861 |
|
---|
862 | Note that the extractors \#34 through \#39 are used only to test the stability of the extraction against
|
---|
863 | changes in the pulse-shape.
|
---|
864 |
|
---|
865 | References: \cite{OF77,OF94}.
|
---|
866 |
|
---|
867 |
|
---|
868 | %%% Local Variables:
|
---|
869 | %%% mode: latex
|
---|
870 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
871 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
872 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
873 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
874 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
875 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
876 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
877 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
878 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
879 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
880 | %%% TeX-master: "MAGIC_signal_reco.te"
|
---|
881 | %%% End:
|
---|