source: trunk/MagicSoft/TDAS-Extractor/MonteCarlo.tex@ 6643

Last change on this file since 6643 was 6643, checked in by gaug, 20 years ago
*** empty log message ***
File size: 15.2 KB
Line 
1\section{Monte Carlo \label{sec:mc}}
2
3\subsection{Introduction \label{sec:mc:intro}}
4
5Many charasteristics of the extractor can only be investigated with the use of Monte-Carlo simulations~\cite{MC-Camera}
6of signal pulses and noise for the following reasons:
7
8\begin{itemize}
9\item While in real conditions, the signal can only be obtained in a Poisson distribution, simulated pulses of a specific
10number of photo-electrons can be generated.
11\item The intrinsic arrival time spread can be chosen within the simulation.
12\item The noise auto-correlation in the low-gain channel cannot be determined from data,
13but instead has to be retrieved from Monte-Carlo studies.
14\item The same pulse can be studied with and without added noise, where the noise level can be deliberately adjusted.
15\item The photo-multiplier and optical link gain fluctuations can be tuned or switched off completely.
16\end{itemize}
17
18Nevertheless, there are always systematic differences between the simulation and the real detector. In our case, especially the
19following short-comings are of concern:
20
21\begin{itemize}
22\item The low-gain pulse is not yet simulated with the correct pulse width, but instead the same pulse shape as the one of the
23high-gain channel has been used.
24\item The low-gain pulse is delayed by only 15 FADC slices in the Monte-Carlo simulations, while it arrives about 16.5 FADC slices
25after the high-gain pulse in real conditions.
26\item No switching noise due to the low-gain switch has been simulated.
27\item The intrinsic transit time spread of the photo-multipliers has not been simulated.
28\item The total dynamic range of the entire signal transmission chain was set to infinite, thus the detector has been simulated
29to be completely linear.
30\end{itemize}
31
32For the subsequent studies, the following settings have been used:
33
34\begin{itemize}
35\item The gain fluctuations for signal pulses were switched off.
36\item The gain fluctuations for the background noise of the light of night sky were instead fully simulated, i.e. very close to
37real conditions.
38\item The intrinsic arrival time spread of the photons was set to be 1\,ns, as expected for gamma showers.
39\item The conversion of total integrated charge to photo-electrons was set to be 7.8~FADC~counts
40per photo-electron, independent of the signal strength.
41\item The trigger jitter was set to be uniformly distributed over 1~FADC slice only.
42\item Only one inner pixel has been simulated.
43\end{itemize}
44
45The last point had the consequence that the extractor {\textit {\bf MExtractFixedWindowPeakSearch}} could not be tested since
46it was equivalent to the sliding window.
47In the following, we used the Monte-Carlo to determine especially the following quantities for each of the tested extractors:
48
49\begin{itemize}
50\item The charge resolution as a function of the input signal strength.
51\item The charge extraction bias as a function of the input signal strength.
52\item The time resolution as a function of the input signal strength.
53\item The effect of adding or removing noise for the above quantities.
54\end{itemize}
55
56\subsection{Conversion Factors \label{sec:mc:convfactors}}
57
58The following figures~\ref{fig:mc:ChargeDivNphe_FixW} through~\ref{fig:mc:ChargeDivNphe_DFSpline} show the conversion factors
59between reconstructed charge and the number of input photo-electrons for each of the tested extractors, with and without added noise
60and for the high-gain and low-gain channels, respectively. One can see that the conversion factors depend on the extraction window size and
61that the addition of noise raises the conversion factors uniformly for all fixed window extractors in the high-gain channel,
62while the sliding window extractors show a bias a low signal intensities.
63
64\begin{figure}[htp]%%[t!]
65\centering
66 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_HiGain.eps}
67 \vspace{\floatsep}
68 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_HiGain.eps}
69 \vspace{\floatsep}
70 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_LoGain.eps}
71 \vspace{\floatsep}
72 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}
73\caption[Charge per Number of photo-electrons Fixed Windows]{Extracted charge per photoelectron versus number of photoelectrons,
74for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones
75low-gain regions. Left: without noise, right: with simulated noise.}
76\label{fig:mc:ChargeDivNphe_FixW}
77\end{figure}
78
79\begin{figure}[htp]
80\centering
81 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_HiGain.eps}
82 \vspace{\floatsep}
83 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_HiGain.eps}
84 \vspace{\floatsep}
85 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_LoGain.eps}
86 \vspace{\floatsep}
87 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_LoGain.eps}
88\caption[Charge per Number of photo-electrons Sliding Windows]{Extracted charge per photoelectron versus number of photoelectrons,
89for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones
90low-gain regions. Left: without noise, right: with simulated noise.}
91\label{fig:mc:ChargeDivNphe_SlidW}
92\end{figure}
93
94\begin{figure}[htp]
95\centering
96 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_HiGain.eps}
97 \vspace{\floatsep}
98 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_HiGain.eps}
99 \vspace{\floatsep}
100 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_LoGain.eps}
101 \vspace{\floatsep}
102 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_LoGain.eps}
103\caption[Charge per Number of photo-electrons Spline and Digital Filter]{Extracted charge per photoelectron versus number of photoelectrons,
104for spline and digital filter extractors in different window sizes. The top plots show the high-gain and the bottom ones
105low-gain regions. Left: without noise, right: with simulated noise.}
106\label{fig:mc:ChargeDivNphe_DFSpline}
107\end{figure}
108
109%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110
111\subsection{Measurement of the Biases \label{sec:mc:baises}}
112
113\begin{figure}[htp]%%[t!]
114\centering
115 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_HiGain.eps}
116 \vspace{\floatsep}
117 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_HiGain.eps}
118 \vspace{\floatsep}
119 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_LoGain.eps}
120 \vspace{\floatsep}
121 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_LoGain.eps}
122 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}
123\caption[Bias Fixed Windows]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
124versus number of photoelectrons,
125for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones
126low-gain regions. Left: without noise, right: with simulated noise.}
127\label{fig:mc:ConversionvsNphe_FixW}
128\end{figure}
129
130\begin{figure}[htp]
131\centering
132 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_HiGain.eps}
133 \vspace{\floatsep}
134 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_HiGain.eps}
135 \vspace{\floatsep}
136 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_LoGain.eps}
137 \vspace{\floatsep}
138 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_LoGain.eps}
139\caption[Bias Sliding Windows]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
140versus number of photoelectrons,
141for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones
142low-gain regions. Left: without noise, right: with simulated noise.}
143\label{fig:mc:ConversionvsNphe_SlidW}
144\end{figure}
145
146\begin{figure}[htp]
147\centering
148 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_HiGain.eps}
149 \vspace{\floatsep}
150 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_HiGain.eps}
151 \vspace{\floatsep}
152 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_LoGain.eps}
153 \vspace{\floatsep}
154 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_LoGain.eps}
155\caption[Bias Spline and Digital Filter]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
156versus number of photoelectrons,
157for spline and digital filter extractors in different window sizes. The top plots show the high-gain and the bottom ones
158low-gain regions. Left: without noise, right: with simulated noise.}
159\label{fig:mc:ConversionvsNphe_DFSpline}
160\end{figure}
161
162\begin{figure}[htp]
163\centering
164 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_HiGain.eps}
165 \vspace{\floatsep}
166 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_HiGain.eps}
167 \vspace{\floatsep}
168 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_LoGain.eps}
169 \vspace{\floatsep}
170 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_LoGain.eps}
171\caption[Charge Resolution Fixed Windows]{The measured resolution (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
172for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones
173low-gain regions. Left: without noise, right: with simulated noise.}
174\label{fig:mc:ChargeRes_FixW}
175\end{figure}
176
177\begin{figure}[htp]
178\centering
179 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_HiGain.eps}
180 \vspace{\floatsep}
181 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_HiGain.eps}
182 \vspace{\floatsep}
183 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_LoGain.eps}
184 \vspace{\floatsep}
185 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_LoGain.eps}
186\caption[Charge Resolution Sliding Windows]{The measured resolution (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
187for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones
188low-gain regions. Left: without noise, right: with simulated noise.}
189\label{fig:mc:ChargeRes_SlidW}
190\end{figure}
191
192\begin{figure}[htp]
193\centering
194 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_HiGain.eps}
195 \vspace{\floatsep}
196 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_HiGain.eps}
197 \vspace{\floatsep}
198 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_LoGain.eps}
199 \vspace{\floatsep}
200 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_LoGain.eps}
201\caption[Charge Resolution Spline and Digital Filter]{The measured resolution
202(RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
203for spline and digital filter extractors in different window sizes. The top plots show the high-gain and the bottom ones
204low-gain regions. Left: without noise, right: with simulated noise.}
205\label{fig:mc:ChargeRes_DFSpline}
206\end{figure}
207
208\clearpage
209
210\subsection{Charge Signals with and without Simulated Noise \label{fig:mc:sec:mc:chargenoise}}
211
212\begin{figure}[htp]
213\centering
214 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_SlidW_HiGain.eps}
215 \vspace{\floatsep}
216 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_FixW_HiGain.eps}
217 \vspace{\floatsep}
218 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_DFSpline_HiGain.eps}
219\caption[Bias due to noise high-gain]{Bias due to noise: Difference of extracted charge of same events, with and without simulated noise,
220for different extractor methods in the high-gain region.}
221\label{fig:mc:Bias_HiGain}
222\end{figure}
223
224\begin{figure}[htp]
225\centering
226 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_SlidW_LoGain.eps}
227 \vspace{\floatsep}
228 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_FixW_LoGain.eps}
229 \vspace{\floatsep}
230 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_DFSpline_LoGain.eps}
231\caption[Bias due to noise low-gain]{Bias due to noise: Difference of extracted charge of same events, with and without simulated noise,
232for different extractor methods in the low-gain region.}
233\label{fig:mc:Bias_LoGain}
234\end{figure}
235
236\clearpage
237
238\subsection{Arrival Times \label{sec:mc:times}}
239
240\begin{figure}[htp]%%[t!]
241\centering
242 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_HiGain.eps}
243\vspace{\floatsep}
244 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_HiGain.eps}
245\vspace{\floatsep}
246 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_LoGain.eps}
247\vspace{\floatsep}
248 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_LoGain.eps}
249\caption[Time Resolution Sliding Windows]{The measured time resolution (RMS of extracted time minus simulated time)
250versus number of photoelectrons,
251for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones
252low-gain regions. Left: without noise, right: with simulated noise.}
253\label{fig:mc:TimeRes_SlidW}
254\end{figure}
255
256\begin{figure}[htp]
257\centering
258 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_HiGain.eps}
259\vspace{\floatsep}
260 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_HiGain.eps}
261\vspace{\floatsep}
262 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_LoGain.eps}
263\vspace{\floatsep}
264 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_LoGain.eps}
265\caption[Time Resolution Spline and Digital Filter]{The measured time resolution (RMS of extracted time minus simulated time)
266versus number of photoelectrons,
267for spline and digital filter window extractors in different window sizes. The top plots show the high-gain and the bottom ones
268low-gain regions. Left: without noise, right: with simulated noise.}
269\label{fig:mc:TimeRes_DFSpline}
270\end{figure}
271
272
273%%% Local Variables:
274%%% mode: latex
275%%% TeX-master: "MAGIC_signal_reco"
276%%% End:
Note: See TracBrowser for help on using the repository browser.