1 | \section{Criteria for an optimal pedestal extraction}
|
---|
2 |
|
---|
3 | \ldots {\it In this section, the distinction is made between:
|
---|
4 | \begin{itemize}
|
---|
5 | \item Defining the pedestal RMS as contribution
|
---|
6 | to the extracted signal fluctuations (later used in the calibration)
|
---|
7 | \item Defining the Pedestal Mean and RMS as the result of distributions obtained by
|
---|
8 | applying the extractor to pedestal runs (yielding biases and modified widths).
|
---|
9 | \item Deriving the correct probability for background fluctuations based on the extracted signal height.
|
---|
10 | ( including biases and modified widths).
|
---|
11 | \end{itemize}
|
---|
12 | }
|
---|
13 |
|
---|
14 | \subsection{Pedestal RMS}
|
---|
15 |
|
---|
16 |
|
---|
17 | \vspace{1cm}
|
---|
18 | \ldots {\it Modified email by W. Wittek from 25 Oct 2004 and 10 Nov 2004}
|
---|
19 | \vspace{1cm}
|
---|
20 |
|
---|
21 | The Pedestal RMS can be completely described by the matrix
|
---|
22 |
|
---|
23 | \begin{equation}
|
---|
24 | < (P_i - <P_i>) * (P_j - <P_j>) >
|
---|
25 | \end{equation}
|
---|
26 |
|
---|
27 | where $i$ and $j$ denote the $i^{th}$ and $j^{th}$ FADC slice and
|
---|
28 | $P_i$ is the pedestal
|
---|
29 | value in slice $i$ for an event and the average $<>$ is over many events (usually 1000).
|
---|
30 | \par
|
---|
31 |
|
---|
32 | By definition, the pedestal RMS is independent from the signal extractor.
|
---|
33 | Therefore, no signal extractor is needed to calculate the pedestals.
|
---|
34 |
|
---|
35 | \subsection{Bias and Error}
|
---|
36 |
|
---|
37 | Consider a large number of signals (FADC spectra), all with the same
|
---|
38 | integrated charge $ST$ (true signal). By applying some signal extractor
|
---|
39 | we obtain a distribution of extracted signals $SE$ (for fixed $ST$ and
|
---|
40 | fixed background fluctuations $BG$). The distribution of the quantity
|
---|
41 |
|
---|
42 | \begin{equation}
|
---|
43 | X = SE-ST
|
---|
44 | \end{equation}
|
---|
45 |
|
---|
46 | has the mean $B$ and the RMS $R$
|
---|
47 |
|
---|
48 | \begin{eqnarray}
|
---|
49 | B &=& <X> \\
|
---|
50 | R^2 &=& <(X-B)^2>
|
---|
51 | \end{eqnarray}
|
---|
52 |
|
---|
53 | One may also define
|
---|
54 |
|
---|
55 | \begin{equation}
|
---|
56 | D^2 = <(SE-ST)^2> = <(SE-ST-B + B)^2> = B^2 + R^2
|
---|
57 | \end{equation}
|
---|
58 |
|
---|
59 | $B$ is the bias, $R$ is the RMS of the distribution of $X$ and $D$ is something
|
---|
60 | like the (asymmetric) error of $SE$.
|
---|
61 | The distribution of $X$, and thus the parameters $B$ and $R$,
|
---|
62 | depend on the size of $ST$ and the size of the background fluctuations $BG$.
|
---|
63 |
|
---|
64 | \par
|
---|
65 |
|
---|
66 | For the normal image cleaning, knowledge of $B$ is sufficient and the
|
---|
67 | error $R$ should be know in order to calculate a correct background probability.
|
---|
68 | \par
|
---|
69 | Also for the model analysis $B$ and $R$ are needed, because you want to keep small
|
---|
70 | signals.
|
---|
71 | \par
|
---|
72 | In the case of the calibration with the F-Factor methoid,
|
---|
73 | the basic relation is:
|
---|
74 |
|
---|
75 | \begin{equation}
|
---|
76 | \frac{(\Delta ST)^2}{<ST>^2} = \frac{1}{<m_{pe}>} * F^2
|
---|
77 | \end{equation}
|
---|
78 |
|
---|
79 | Here $\Delta ST$ is the fluctuation of the true signal $ST$ due to the
|
---|
80 | fluctuation of the number of photo electrons. $ST$ is obtained from the
|
---|
81 | measured fluctuations of $SE$ ($RMS_{SE}$) by subtracting the fluctuation of the
|
---|
82 | extracted signal ($R$) due to the fluctuation of the pedestal.
|
---|
83 |
|
---|
84 | \begin{equation}
|
---|
85 | (\Delta ST)^2 = RMS_{SE}^2 - R^2
|
---|
86 | \end{equation}
|
---|
87 |
|
---|
88 | A way to check whether the right RMS has been subtracted is to make the
|
---|
89 | Razmick plot
|
---|
90 |
|
---|
91 | \begin{equation}
|
---|
92 | \frac{(\Delta ST)^2}{<ST>^2} \quad \textit{vs.} \quad \frac{1}{<ST>}
|
---|
93 | \end{equation}
|
---|
94 |
|
---|
95 | This should give a straight line passing through the origin. The slope of
|
---|
96 | the line is equal to
|
---|
97 |
|
---|
98 | \begin{equation}
|
---|
99 | c * F^2
|
---|
100 | \end{equation}
|
---|
101 |
|
---|
102 | where $c$ is the photon/ADC conversion factor $<ST>/<m_{pe}>$.
|
---|
103 |
|
---|
104 | \subsection{How to retrieve Bias $B$ and Error $R$}
|
---|
105 |
|
---|
106 | $R$ is in general different from the pedestal RMS. It cannot be
|
---|
107 | obtained by applying the signal extractor to pedestal events, especially
|
---|
108 | for large signals (e.g. calibration signals).
|
---|
109 | \par
|
---|
110 | In the case of the optimum filter, $R$ can be obtained from the
|
---|
111 | fitted error of the extracted signal ($\Delta(SE)_{fitted}$),
|
---|
112 | which one can calculate for every event.
|
---|
113 |
|
---|
114 | \vspace{1cm}
|
---|
115 | \ldots {\it Whether this statemebt is true should be checked by MC.}
|
---|
116 | \vspace{1cm}
|
---|
117 |
|
---|
118 | For large signals, one would expect the bias of the extracted signal
|
---|
119 | to be small and negligible (i.e. $<ST> \approx <SE>$).
|
---|
120 | \par
|
---|
121 |
|
---|
122 | In order to get the missing information, we did the following investigations:
|
---|
123 | \begin{enumerate}
|
---|
124 | \item Determine bias $B$ and resolution $R$ from MC events with and without added noise.
|
---|
125 | Assuming that $R$ and $B$ are negligible for the events without noise, one can
|
---|
126 | get a dependency of both values from the size of the signal.
|
---|
127 | \item Determine $R$ from the fitted error of $SE$, which is possible for the
|
---|
128 | fit and the digital filter. In prinicple, all dependencies can be retrieved with this
|
---|
129 | method.
|
---|
130 | \item Determine $R$ for low signals by applying the signal extractor to a fixed window
|
---|
131 | of pedestal events. The background fluctuations can be simulated with different
|
---|
132 | levels of night sky background and the continuous light, but no signal size
|
---|
133 | dependency can be retrieved with the method. Its results are only valid for small
|
---|
134 | signals.
|
---|
135 | \end{enumerate}
|
---|
136 |
|
---|
137 | \par
|
---|
138 |
|
---|
139 | \subsubsection{Determine error $R$ by applying the signal extractor to a fixed window
|
---|
140 | of pedestal events}
|
---|
141 |
|
---|
142 | By applying the signal extractor to pedestal events we want to
|
---|
143 | determine these parameters. There are the following possibilities:
|
---|
144 |
|
---|
145 | \begin{enumerate}
|
---|
146 | \item Applying the signal extractor allowing for a possible sliding window
|
---|
147 | to get information about the bias $B$ (valid for low signals).
|
---|
148 | \item Applying the signal extractor to a fixed window, to get something like
|
---|
149 | $R$. In the case of the digital filter and the spline, this has to be done
|
---|
150 | by randomizing the time slice indices.
|
---|
151 | \end{enumerate}
|
---|
152 |
|
---|
153 | \vspace{1cm}
|
---|
154 | \ldots {\it This assumptions still have to proven, best mathematically!!! Wolfgang, Thomas???}
|
---|
155 | \vspace{1cm}
|
---|
156 | \par
|
---|
157 |
|
---|
158 | The following plots~\ref{fig:df:distped:run38993} through~\ref{fig:amp:relrms:run38996} show results
|
---|
159 | obtained with the second method for three background intensities:
|
---|
160 | \begin{enumerate}
|
---|
161 | \item Closed camera and no (Poissonian) fluctuation due to photons from the night sky background
|
---|
162 | \item The camera pointing to a galactic region with stars in the field of view
|
---|
163 | \item The camera illuminated by a continuous light source of high intensity causing much higher pedestal
|
---|
164 | fluctuations than in usual observation conditions.
|
---|
165 | \end{enumerate}
|
---|
166 |
|
---|
167 | Figures~\ref{fig:df:distped:run38993},~\ref{fig:df:distped:run38995},~\ref{fig:df:distped:run38996},
|
---|
168 | and~\ref{fig:amp:distped:run38993},~\ref{fig:amp:distped:run38995},~\ref{fig:amp:distped:run38996} show the
|
---|
169 | extracted pedestal distributions for the digital filter with cosmics weights (extractor~\#28) and the
|
---|
170 | spline amplitude (extractor~\#27), respectively for one examplary channel (corresponding to pixel 200).
|
---|
171 | One can see the (asymmetric) Poisson behaviour of the
|
---|
172 | night sky background photons for the distributions with open camera and the cutoff at the lower egde
|
---|
173 | for the distribution with high-intensity continuous light due to a limited pedestal offset and the cutoff
|
---|
174 | to negative fluctuations.
|
---|
175 | \par
|
---|
176 | Figures~\ref{fig:df:relmean:run38993},~\ref{fig:df:relmean:run38995},~\ref{fig:df:relmean:run38996},
|
---|
177 | and~\ref{fig:amp:relmean:run38993},~\ref{fig:amp:relmean:run38995},~\ref{fig:amp:relmean:run38996} show the
|
---|
178 | relative difference between the calculated pedestal mean and
|
---|
179 | the one obtained by applying the extractor for
|
---|
180 | all channels of the MAGIC camera. One can see that in all cases, the distribution is centered around zero,
|
---|
181 | while its width is never larger than 0.01 which corresponds about to the precision of the extracted mean for
|
---|
182 | the number of used events. (A very similar distribution is obtained by comparing the results
|
---|
183 | of the same pedestal calculator applied to different ranges of FADC slices.)
|
---|
184 | \par
|
---|
185 | Figures~\ref{fig:df:relrms:run38993},~\ref{fig:df:relrms:run38995},~\ref{fig:df:relrms:run38996},
|
---|
186 | and~\ref{fig:amp:relrms:run38993},~\ref{fig:amp:relrms:run38995},~\ref{fig:amp:relrms:run38996} show the
|
---|
187 | relative difference between the calculated pedestal RMS, normalized to an equivalent number of slices
|
---|
188 | (2.5 for the digital filter and 1. for the amplitude of the spline) and
|
---|
189 | the one obtained by applying the extractor for all channels of the MAGIC camera.
|
---|
190 | One can see that in all cases, the distribution is not centered around zero, but shows an offset depending
|
---|
191 | on the light intensity. The difference can be 10\% in the case of the digital filter and even 25\% for the
|
---|
192 | spline. This big difference for the spline is partly explained by the fact that the pedestals have to be
|
---|
193 | calculated from an even number of slices to account for the clock-noise. However, the (normalized) pedestal
|
---|
194 | RMS depends critically on the number of summed FADC slices, especially at very low numbers. In general,
|
---|
195 | the higher the number of summed FADC slices, the higher the (to the square root of the number of slices)
|
---|
196 | normalized pedestal RMS.
|
---|
197 |
|
---|
198 | \begin{figure}[htp]
|
---|
199 | \centering
|
---|
200 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_Signal_Pixel200.eps}
|
---|
201 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with
|
---|
202 | closed camera lids for one channel.}
|
---|
203 | \label{fig:df:distped:run38993}
|
---|
204 | \vspace{\floatsep}
|
---|
205 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_Signal_Pixel200.eps}
|
---|
206 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with galactic star background for one channel.}
|
---|
207 | \label{fig:df:distped:run38995}
|
---|
208 | \vspace{\floatsep}
|
---|
209 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_Signal_Pixel200.eps}
|
---|
210 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from run with
|
---|
211 | continuous light level 100 for one channel.}
|
---|
212 | \label{fig:df:distped:run38996}
|
---|
213 | \end{figure}
|
---|
214 |
|
---|
215 | \begin{figure}[htp]
|
---|
216 | \centering
|
---|
217 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_RelMean.eps}
|
---|
218 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Mean Pedestal per FADC slice from pedestal
|
---|
219 | run with closed camera lids}
|
---|
220 | \label{fig:df:relmean:run38993}
|
---|
221 | \vspace{\floatsep}
|
---|
222 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_RelMean.eps}
|
---|
223 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Mean Pedestal per FADC slice from pedestal
|
---|
224 | run with galactic star background}
|
---|
225 | \label{fig:df:relmean:run38995}
|
---|
226 | \vspace{\floatsep}
|
---|
227 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_RelMean.eps}
|
---|
228 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Mean Pedestal per FADC slice from run
|
---|
229 | with continuous light level: 100}
|
---|
230 | \label{fig:df:relmean:run38996}
|
---|
231 | \end{figure}
|
---|
232 |
|
---|
233 |
|
---|
234 | \begin{figure}[htp]
|
---|
235 | \centering
|
---|
236 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_RMSRelDiff.eps}
|
---|
237 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Pedestal RMS per FADC slice
|
---|
238 | (calculated out of 2 FADC slices each) from pedestal run
|
---|
239 | with closed camera lids for inner (left) and outer (right) pixels. An equivalent number of 2.5 FADC slices
|
---|
240 | has been used for the normalization of the pedestal RMS. The difference amounts to about 10\%.}
|
---|
241 | \label{fig:df:relrms:run38993}
|
---|
242 | \vspace{\floatsep}
|
---|
243 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_RMSRelDiff.eps}
|
---|
244 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Pedestal RMS per FADC slice
|
---|
245 | (calculated out of 2 FADC slices each) from pedestal run with galactic star background for inner (left)
|
---|
246 | and outer (right) pixels. An equivalent number of 2.5 FADC slices
|
---|
247 | has been used for the normalization of the pedestal RMS. The difference amounts to about 4\%.}
|
---|
248 | \label{fig:df:relrms:run38995}
|
---|
249 | \vspace{\floatsep}
|
---|
250 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_RMSRelDiff.eps}
|
---|
251 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Pedestal RMS per FADC slice
|
---|
252 | (calculated out of 2 FADC slices each) from run with continuous light level: 100 for inner (left)
|
---|
253 | and outer (right) pixels. An equivalent number of 2.5 FADC slices
|
---|
254 | has been used for the normalization of the pedestal RMS. The difference amounts to about 3--5\%.}
|
---|
255 | \label{fig:df:relrms:run38996}
|
---|
256 | \end{figure}
|
---|
257 |
|
---|
258 |
|
---|
259 | \begin{figure}[htp]
|
---|
260 | \centering
|
---|
261 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_Signal_Pixel200.eps}
|
---|
262 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run
|
---|
263 | with closed camera lids for one channel.}
|
---|
264 | \label{fig:amp:distped:run38993}
|
---|
265 | \vspace{\floatsep}
|
---|
266 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_Signal_Pixel200.eps}
|
---|
267 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run
|
---|
268 | with galactic star background for one channel.}
|
---|
269 | \label{fig:amp:distped:run38995}
|
---|
270 | \vspace{\floatsep}
|
---|
271 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_Signal_Pixel200.eps}
|
---|
272 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from run with
|
---|
273 | continuous light level: 100 for one channel.}
|
---|
274 | \label{fig:amp:distped:run38996}
|
---|
275 | \end{figure}
|
---|
276 |
|
---|
277 | \begin{figure}[htp]
|
---|
278 | \centering
|
---|
279 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_RelMean.eps}
|
---|
280 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Mean Pedestal per FADC slice
|
---|
281 | from pedestal run with closed camera lids}
|
---|
282 | \label{fig:amp:relmean:run38993}
|
---|
283 | \vspace{\floatsep}
|
---|
284 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_RelMean.eps}
|
---|
285 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Mean Pedestal per FADC slice
|
---|
286 | from pedestal run with galactic star background}
|
---|
287 | \label{fig:amp:relmean:run38995}
|
---|
288 | \vspace{\floatsep}
|
---|
289 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_RelMean.eps}
|
---|
290 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Mean Pedestal per FADC slice
|
---|
291 | from run with continuous light level: 100}
|
---|
292 | \label{fig:amp:relmean:run38996}
|
---|
293 | \end{figure}
|
---|
294 |
|
---|
295 |
|
---|
296 | \begin{figure}[htp]
|
---|
297 | \centering
|
---|
298 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_RMSRelDiff.eps}
|
---|
299 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Pedestal RMS per FADC slice
|
---|
300 | (calculated out of 2 FADC slices each) from pedestal run
|
---|
301 | with closed camera lids for inner (left) and outer (right) pixels. An equivalent number of 1 FADC slice
|
---|
302 | has been used for the normalization of the pedestal RMS. The difference amounts to about 20\%.}
|
---|
303 | \label{fig:amp:relrms:run38993}
|
---|
304 | \vspace{\floatsep}
|
---|
305 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_RMSRelDiff.eps}
|
---|
306 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Pedestal RMS per FADC slice
|
---|
307 | (calculated out of 2 FADC slices each) from pedestal run with galactic star background for inner (left)
|
---|
308 | and outer (right) pixels. An equivalent number of 1 FADC slice
|
---|
309 | has been used for the normalization of the pedestal RMS. The difference amounts to about 25\%.}
|
---|
310 | \label{fig:amp:relrms:run38995}
|
---|
311 | \vspace{\floatsep}
|
---|
312 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_RMSRelDiff.eps}
|
---|
313 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Pedestal RMS per FADC slice
|
---|
314 | (calculated out of 2 FADC slices each) from run with continuous light level: 100 for inner (left)
|
---|
315 | and outer (right) pixels. An equivalent number of 1 FADC slice
|
---|
316 | has been used for the normalization of the pedestal RMS. The difference amounts to about 25\%.}
|
---|
317 | \label{fig:amp:relrms:run38996}
|
---|
318 | \end{figure}
|
---|
319 |
|
---|
320 |
|
---|
321 | \vspace{1cm}
|
---|
322 | \ldots{\it More test plots can be found under:
|
---|
323 | http://magic.ifae.es/$\sim$markus/ExtractorPedestals/ }
|
---|
324 | \vspace{1cm}
|
---|
325 |
|
---|
326 | %%% Local Variables:
|
---|
327 | %%% mode: latex
|
---|
328 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
329 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
330 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
331 | %%% TeX-master: "MAGIC_signal_reco."
|
---|
332 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
333 | %%% End:
|
---|