| 1 | \section{Criteria for an Optimal Pedestal Extraction \label{sec:pedestals}}
|
|---|
| 2 |
|
|---|
| 3 | \ldots {\it In this section, the distinction is made between:
|
|---|
| 4 | \begin{itemize}
|
|---|
| 5 | \item Defining the pedestal RMS as contribution
|
|---|
| 6 | to the extracted signal fluctuations (later used in the calibration)
|
|---|
| 7 | \item Defining the Pedestal Mean and RMS as the result of distributions obtained by
|
|---|
| 8 | applying the extractor to pedestal runs (yielding biases and modified widths).
|
|---|
| 9 | \item Deriving the correct probability for background fluctuations based on the extracted signal height.
|
|---|
| 10 | ( including biases and modified widths).
|
|---|
| 11 | \end{itemize}
|
|---|
| 12 | }
|
|---|
| 13 |
|
|---|
| 14 | \subsection{Pedestal RMS}
|
|---|
| 15 |
|
|---|
| 16 |
|
|---|
| 17 | \vspace{1cm}
|
|---|
| 18 | \ldots {\it Modified email by W. Wittek from 25 Oct 2004 and 10 Nov 2004}
|
|---|
| 19 | \vspace{1cm}
|
|---|
| 20 |
|
|---|
| 21 | The background $BG$ (Pedestal)
|
|---|
| 22 | can be completely described by the noise-autocorrelation matrix $\boldsymbol{B}$
|
|---|
| 23 | (eq.~\ref{eq:autocorr}),
|
|---|
| 24 | where the diagonal elements give what is usually denoted as the ``Pedestal RMS''.
|
|---|
| 25 |
|
|---|
| 26 | \par
|
|---|
| 27 |
|
|---|
| 28 | By definition, the noise autocorrelation matrix $B$ and thus the ``pedestal RMS''
|
|---|
| 29 | is independent from the signal extractor.
|
|---|
| 30 |
|
|---|
| 31 | \subsection{Bias and Error}
|
|---|
| 32 |
|
|---|
| 33 | Consider a large number of signals (FADC spectra), all with the same
|
|---|
| 34 | integrated charge $ST$ (true signal). By applying some signal extractor
|
|---|
| 35 | we obtain a distribution of extracted signals $SE$ (for fixed $ST$ and
|
|---|
| 36 | fixed background fluctuations $BG$). The distribution of the quantity
|
|---|
| 37 |
|
|---|
| 38 | \begin{equation}
|
|---|
| 39 | X = SE-ST
|
|---|
| 40 | \end{equation}
|
|---|
| 41 |
|
|---|
| 42 | has the mean $B$ and the RMS $R$ defined by:
|
|---|
| 43 |
|
|---|
| 44 | \begin{eqnarray}
|
|---|
| 45 | B &=& <X> \\
|
|---|
| 46 | R^2 &=& <(X-B)^2>
|
|---|
| 47 | \end{eqnarray}
|
|---|
| 48 |
|
|---|
| 49 | One may also define
|
|---|
| 50 |
|
|---|
| 51 | \begin{equation}
|
|---|
| 52 | D^2 = <(SE-ST)^2> = <(SE-ST-B + B)^2> = B^2 + R^2
|
|---|
| 53 | \end{equation}
|
|---|
| 54 |
|
|---|
| 55 | The parameter $B$ can be called the bias of the pedestal extractor and $R$
|
|---|
| 56 | the RMS of the distribution of $X$ and $D$ is something
|
|---|
| 57 | like the (asymmetric) error of $SE$.
|
|---|
| 58 | The distribution of $X$, and thus the parameters $B$ and $R$,
|
|---|
| 59 | depend generally on the size of $ST$ and the size of the background fluctuations $BG$.
|
|---|
| 60 |
|
|---|
| 61 | \par
|
|---|
| 62 |
|
|---|
| 63 | For the normal image cleaning, knowledge of $B$ is sufficient and the
|
|---|
| 64 | error $R$ should be known in order to calculate a correct background probability.
|
|---|
| 65 |
|
|---|
| 66 | \par
|
|---|
| 67 | \ldots {\textit{\bf THOMAS SCHWEIZER ???}}
|
|---|
| 68 | \par
|
|---|
| 69 | Also for the model analysis $B$ and $R$ are needed if one wants to keep small
|
|---|
| 70 | signals.
|
|---|
| 71 | \par
|
|---|
| 72 | In the case of the calibration with the F-Factor methoid,
|
|---|
| 73 | the basic relation is:
|
|---|
| 74 |
|
|---|
| 75 | \begin{equation}
|
|---|
| 76 | \frac{(\Delta ST)^2}{<ST>^2} = \frac{1}{<n_{phe}>} * F^2
|
|---|
| 77 | \end{equation}
|
|---|
| 78 |
|
|---|
| 79 | Here $\Delta ST$ is the fluctuation of the true signal $ST$ due to the
|
|---|
| 80 | fluctuation of the number of photo electrons. $ST$ is obtained from the
|
|---|
| 81 | measured fluctuations of $SE$ ($RMS_{SE}$) by subtracting those fluctuations of the
|
|---|
| 82 | extracted signal which are due to the fluctuation of the pedestal ($R$)\footnote{%
|
|---|
| 83 | A way to check whether the right RMS has been subtracted is to make the
|
|---|
| 84 | Razmick plot
|
|---|
| 85 |
|
|---|
| 86 | \begin{equation}
|
|---|
| 87 | \frac{(\Delta ST)^2}{<ST>^2} \quad \textit{vs.} \quad \frac{1}{<ST>}
|
|---|
| 88 | \end{equation}
|
|---|
| 89 |
|
|---|
| 90 | This should give a straight line passing through the origin. The slope of
|
|---|
| 91 | the line is equal to
|
|---|
| 92 |
|
|---|
| 93 | \begin{equation}
|
|---|
| 94 | c * F^2
|
|---|
| 95 | \end{equation}
|
|---|
| 96 |
|
|---|
| 97 | where $c$ is the photon/ADC conversion factor $<ST>/<m_{pe}>$.}.
|
|---|
| 98 |
|
|---|
| 99 | \begin{equation}
|
|---|
| 100 | (\Delta ST)^2 = RMS_{SE}^2 - R^2
|
|---|
| 101 | \label{eq:rmssubtraction}
|
|---|
| 102 | \end{equation}
|
|---|
| 103 |
|
|---|
| 104 | \subsection{How to Retrieve Bias $B$ and Error $R$}
|
|---|
| 105 |
|
|---|
| 106 | $R$ is in general different from the pedestal RMS. It cannot be
|
|---|
| 107 | obtained by applying the signal extractor to pedestal events, especially
|
|---|
| 108 | for large signals (e.g. calibration signals).
|
|---|
| 109 | \par
|
|---|
| 110 | In the case of the optimum filter, $R$ is in theory independent from the
|
|---|
| 111 | signal amplitude $ST$ and depends only on the background $BG$ (eq.~\ref{of_noise}).
|
|---|
| 112 | It can be obtained from the
|
|---|
| 113 | fitted error of the extracted signal ($\Delta(SE)_{fitted}$),
|
|---|
| 114 | which one can calculate for every event or by applying the extractor to a fixed window
|
|---|
| 115 | of pure background events (``pedestal events'').
|
|---|
| 116 |
|
|---|
| 117 | \par
|
|---|
| 118 |
|
|---|
| 119 | In order to get the missing information, we did the following investigations:
|
|---|
| 120 | \begin{enumerate}
|
|---|
| 121 | \item Determine $R$ by applying the signal extractor to a fixed window
|
|---|
| 122 | of pedestal events. The background fluctuations can be simulated with different
|
|---|
| 123 | levels of night sky background and the continuous light, but no signal size
|
|---|
| 124 | dependency can be retrieved with the method.
|
|---|
| 125 | \item Determine bias $B$ and resolution $R$ from MC events with and without added noise.
|
|---|
| 126 | Assuming that $R$ and $B$ are negligible for the events without noise, one can
|
|---|
| 127 | get a dependency of both values from the size of the signal.
|
|---|
| 128 | \item Determine $R$ from the fitted error of $SE$, which is possible for the
|
|---|
| 129 | fit and the digital filter (eq.~\ref{of_noise}).
|
|---|
| 130 | In prinicple, all dependencies can be retrieved with this method.
|
|---|
| 131 | \end{enumerate}
|
|---|
| 132 |
|
|---|
| 133 | \subsubsection{ \label{sec:determiner} Determine $R$ by Applying the Signal Extractor to a Fixed Window
|
|---|
| 134 | of Pedestal Events}
|
|---|
| 135 |
|
|---|
| 136 | By applying the signal extractor to a fixed window of pedestal events, we
|
|---|
| 137 | determined the parameter $R$ for the case of no signal ($ST = 0$). In the case of
|
|---|
| 138 | all extractors using a fixed window from the beginning (extractors nr. \#1 to \#22
|
|---|
| 139 | in section~\ref{sec:algorithms}), the results are thus by construction the same as calculating
|
|---|
| 140 | the mean and the RMS of a same (fixed) number of FADC slices (the conventional ``Pedestal
|
|---|
| 141 | Calculation'').
|
|---|
| 142 |
|
|---|
| 143 | \par
|
|---|
| 144 | In the case of the amplitude extracting spline (extractor nr. \#23), we placed the
|
|---|
| 145 | spline maximum value (which determines the exact extraction window) at a random place
|
|---|
| 146 | within the digitizing binning resolution (0.01 FADC slices)
|
|---|
| 147 | of one central FADC slice.
|
|---|
| 148 | In the case of the digital filter (extractor nr. \#28), the time shift was
|
|---|
| 149 | randomized for each event within one central FADC slice.
|
|---|
| 150 |
|
|---|
| 151 | \par
|
|---|
| 152 |
|
|---|
| 153 | The following plots~\ref{fig:df:distped:run38993} through~\ref{fig:amp:relrms:run38996} show results
|
|---|
| 154 | obtained with the second method for three background intensities:
|
|---|
| 155 | \begin{enumerate}
|
|---|
| 156 | \item Closed camera and no (Poissonian) fluctuation due to photons from the night sky background
|
|---|
| 157 | \item The camera pointing to a galactic region with stars in the field of view
|
|---|
| 158 | \item The camera illuminated by a continuous light source of high intensity causing much higher pedestal
|
|---|
| 159 | fluctuations than in usual observation conditions.
|
|---|
| 160 | \end{enumerate}
|
|---|
| 161 |
|
|---|
| 162 | Figures~\ref{fig:df:distped:run38993},~\ref{fig:df:distped:run38995},~\ref{fig:df:distped:run38996},
|
|---|
| 163 | and~\ref{fig:amp:distped:run38993},~\ref{fig:amp:distped:run38995},~\ref{fig:amp:distped:run38996} show the
|
|---|
| 164 | extracted pedestal distributions for the digital filter with cosmics weights (extractor~\#28) and the
|
|---|
| 165 | spline amplitude (extractor~\#27), respectively for one examplary channel (corresponding to pixel 200).
|
|---|
| 166 | One can see the (asymmetric) Poisson behaviour of the
|
|---|
| 167 | night sky background photons for the distributions with open camera and the cutoff at the lower egde
|
|---|
| 168 | for the distribution with high-intensity continuous light due to a limited pedestal offset and the cutoff
|
|---|
| 169 | to negative fluctuations.
|
|---|
| 170 | \par
|
|---|
| 171 | Figures~\ref{fig:df:relmean:run38993},~\ref{fig:df:relmean:run38995},~\ref{fig:df:relmean:run38996},
|
|---|
| 172 | and~\ref{fig:amp:relmean:run38993},~\ref{fig:amp:relmean:run38995},~\ref{fig:amp:relmean:run38996} show the
|
|---|
| 173 | relative difference between the calculated pedestal mean and
|
|---|
| 174 | the one obtained by applying the extractor for
|
|---|
| 175 | all channels of the MAGIC camera. One can see that in all cases, the distribution is centered around zero,
|
|---|
| 176 | while its width is never larger than 0.01 which corresponds about to the precision of the extracted mean for
|
|---|
| 177 | the number of used events. (A very similar distribution is obtained by comparing the results
|
|---|
| 178 | of the same pedestal calculator applied to different ranges of FADC slices.)
|
|---|
| 179 | \par
|
|---|
| 180 | Figures~\ref{fig:df:relrms:run38993},~\ref{fig:df:relrms:run38995},~\ref{fig:df:relrms:run38996},
|
|---|
| 181 | and~\ref{fig:amp:relrms:run38993},~\ref{fig:amp:relrms:run38995},~\ref{fig:amp:relrms:run38996} show the
|
|---|
| 182 | relative difference between the calculated pedestal RMS, normalized to an equivalent number of slices
|
|---|
| 183 | (2.5 for the digital filter and 1. for the amplitude of the spline) and
|
|---|
| 184 | the one obtained by applying the extractor for all channels of the MAGIC camera.
|
|---|
| 185 | One can see that in all cases, the distribution is not centered around zero, but shows an offset depending
|
|---|
| 186 | on the light intensity. The difference can be 10\% in the case of the digital filter and even 25\% for the
|
|---|
| 187 | spline. This big difference for the spline is partly explained by the fact that the pedestals have to be
|
|---|
| 188 | calculated from an even number of slices to account for the clock-noise. However, the (normalized) pedestal
|
|---|
| 189 | RMS depends critically on the number of summed FADC slices, especially at very low numbers. In general,
|
|---|
| 190 | the higher the number of summed FADC slices, the higher the (to the square root of the number of slices)
|
|---|
| 191 | normalized pedestal RMS.
|
|---|
| 192 |
|
|---|
| 193 | \begin{figure}[htp]
|
|---|
| 194 | \centering
|
|---|
| 195 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_Signal_Pixel200.eps}
|
|---|
| 196 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with
|
|---|
| 197 | closed camera lids for one channel.}
|
|---|
| 198 | \label{fig:df:distped:run38993}
|
|---|
| 199 | \vspace{\floatsep}
|
|---|
| 200 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_Signal_Pixel200.eps}
|
|---|
| 201 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with galactic star background for one channel.}
|
|---|
| 202 | \label{fig:df:distped:run38995}
|
|---|
| 203 | \vspace{\floatsep}
|
|---|
| 204 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_Signal_Pixel200.eps}
|
|---|
| 205 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from run with
|
|---|
| 206 | continuous light level 100 for one channel.}
|
|---|
| 207 | \label{fig:df:distped:run38996}
|
|---|
| 208 | \end{figure}
|
|---|
| 209 |
|
|---|
| 210 | \begin{figure}[htp]
|
|---|
| 211 | \centering
|
|---|
| 212 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RelMean.eps}
|
|---|
| 213 | \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from pedestal
|
|---|
| 214 | run with closed camera lids (in photo-electrons)}
|
|---|
| 215 | \label{fig:df:relmean:run38993}
|
|---|
| 216 | \vspace{\floatsep}
|
|---|
| 217 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RelMean.eps}
|
|---|
| 218 | \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from pedestal
|
|---|
| 219 | run with galactic star background (in photo-electrons)}
|
|---|
| 220 | \label{fig:df:relmean:run38995}
|
|---|
| 221 | \vspace{\floatsep}
|
|---|
| 222 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RelMean.eps}
|
|---|
| 223 | \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from run
|
|---|
| 224 | with continuous light level: 100 (in photo-electrons)}
|
|---|
| 225 | \label{fig:df:relmean:run38996}
|
|---|
| 226 | \end{figure}
|
|---|
| 227 |
|
|---|
| 228 |
|
|---|
| 229 | \begin{figure}[htp]
|
|---|
| 230 | \centering
|
|---|
| 231 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RMSDiff.eps}
|
|---|
| 232 | \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm
|
|---|
| 233 | appied on a fixed window, and simply summing up the same number of FADC slices.
|
|---|
| 234 | Pedestal run
|
|---|
| 235 | with closed camera lids for inner (left) and outer (right) pixels. }
|
|---|
| 236 | \label{fig:df:relrms:run38993}
|
|---|
| 237 | \vspace{\floatsep}
|
|---|
| 238 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RMSDiff.eps}
|
|---|
| 239 | \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm
|
|---|
| 240 | appied on a fixed window, and simply summing up the same number of FADC slices.
|
|---|
| 241 | from pedestal run with galactic star background for inner (left)
|
|---|
| 242 | and outer (right) pixels. }
|
|---|
| 243 | \label{fig:df:relrms:run38995}
|
|---|
| 244 | \vspace{\floatsep}
|
|---|
| 245 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RMSDiff.eps}
|
|---|
| 246 | \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm
|
|---|
| 247 | appied on a fixed window, and simply summing up the same number of FADC slices.
|
|---|
| 248 | from run with continuous light level: 100 for inner (left)
|
|---|
| 249 | and outer (right) pixels. }
|
|---|
| 250 | \label{fig:df:relrms:run38996}
|
|---|
| 251 | \end{figure}
|
|---|
| 252 |
|
|---|
| 253 |
|
|---|
| 254 | \begin{figure}[htp]
|
|---|
| 255 | \centering
|
|---|
| 256 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_Signal_Pixel200.eps}
|
|---|
| 257 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run
|
|---|
| 258 | with closed camera lids for one channel.}
|
|---|
| 259 | \label{fig:amp:distped:run38993}
|
|---|
| 260 | \vspace{\floatsep}
|
|---|
| 261 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_Signal_Pixel200.eps}
|
|---|
| 262 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run
|
|---|
| 263 | with galactic star background for one channel.}
|
|---|
| 264 | \label{fig:amp:distped:run38995}
|
|---|
| 265 | \vspace{\floatsep}
|
|---|
| 266 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_Signal_Pixel200.eps}
|
|---|
| 267 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from run with
|
|---|
| 268 | continuous light level: 100 for one channel.}
|
|---|
| 269 | \label{fig:amp:distped:run38996}
|
|---|
| 270 | \end{figure}
|
|---|
| 271 |
|
|---|
| 272 | \begin{figure}[htp]
|
|---|
| 273 | \centering
|
|---|
| 274 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RelMean.eps}
|
|---|
| 275 | \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm
|
|---|
| 276 | appied on a fixed window, and simply summing up the same number of FADC slices.
|
|---|
| 277 | Pedestal run with closed camera lids.}
|
|---|
| 278 | \label{fig:amp:relmean:run38993}
|
|---|
| 279 | \vspace{\floatsep}
|
|---|
| 280 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RelMean.eps}
|
|---|
| 281 | \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm
|
|---|
| 282 | appied on a fixed window, and simply summing up the same number of FADC slices
|
|---|
| 283 | Pedestal run with galactic star background.}
|
|---|
| 284 | \label{fig:amp:relmean:run38995}
|
|---|
| 285 | \vspace{\floatsep}
|
|---|
| 286 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RelMean.eps}
|
|---|
| 287 | \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm
|
|---|
| 288 | appied on a fixed window, and simply summing up the same number of FADC slices.
|
|---|
| 289 | Pedestal run with continuous light level: 100}
|
|---|
| 290 | \label{fig:amp:relmean:run38996}
|
|---|
| 291 | \end{figure}
|
|---|
| 292 |
|
|---|
| 293 |
|
|---|
| 294 | \begin{figure}[htp]
|
|---|
| 295 | \centering
|
|---|
| 296 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RMSDiff.eps}
|
|---|
| 297 | \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction
|
|---|
| 298 | algorithm appied on a fixed window, and simply summing up the same number of FADC slices.
|
|---|
| 299 | Pedestal run
|
|---|
| 300 | with closed camera lids for inner (left) and outer (right) pixels. }
|
|---|
| 301 | \label{fig:amp:relrms:run38993}
|
|---|
| 302 | \vspace{\floatsep}
|
|---|
| 303 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RMSDiff.eps}
|
|---|
| 304 | \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction
|
|---|
| 305 | algorithm appied on a fixed window, and simply summing up the same number of FADC slices.
|
|---|
| 306 | Pedestal run with galactic star background for inner (left)
|
|---|
| 307 | and outer (right) pixels.}
|
|---|
| 308 | \label{fig:amp:relrms:run38995}
|
|---|
| 309 | \vspace{\floatsep}
|
|---|
| 310 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RMSDiff.eps}
|
|---|
| 311 | \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction
|
|---|
| 312 | algorithm appied on a fixed window, and simply summing up the same number of FADC slices.
|
|---|
| 313 | Pedestal run with continuous light level: 100 for inner (left)
|
|---|
| 314 | and outer (right) pixels.}
|
|---|
| 315 | \label{fig:amp:relrms:run38996}
|
|---|
| 316 | \end{figure}
|
|---|
| 317 |
|
|---|
| 318 |
|
|---|
| 319 |
|
|---|
| 320 | \begin{figure}[htp]
|
|---|
| 321 | \centering
|
|---|
| 322 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38993_RelMean.eps}
|
|---|
| 323 | \caption{MExtractTimeAndChargeSpline with integral over 2 slices: Difference in mean pedestal (per FADC slice)
|
|---|
| 324 | Pedestal run with closed camera lids.}
|
|---|
| 325 | \label{fig:int:relmean:run38993}
|
|---|
| 326 | \vspace{\floatsep}
|
|---|
| 327 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38995_RelMean.eps}
|
|---|
| 328 | \caption{MExtractTimeAndChargeSpline with integral over 2 slices: Difference in mean pedestal (per FADC slice)
|
|---|
| 329 | Pedestal run with galactic star background.}
|
|---|
| 330 | \label{fig:int:relmean:run38995}
|
|---|
| 331 | \vspace{\floatsep}
|
|---|
| 332 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38996_RelMean.eps}
|
|---|
| 333 | \caption{MExtractTimeAndChargeSpline with integral over 2 slices: Difference in mean pedestal (per FADC slice)
|
|---|
| 334 | Pedestal run with continuous light level: 100}
|
|---|
| 335 | \label{fig:int:relmean:run38996}
|
|---|
| 336 | \end{figure}
|
|---|
| 337 |
|
|---|
| 338 | \begin{figure}[htp]
|
|---|
| 339 | \centering
|
|---|
| 340 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38993_RMSDiff.eps}
|
|---|
| 341 | \caption{MExtractTimeAndChargeSpline with integral over 2 slices: Difference pedestal RMS (per FADC slice)
|
|---|
| 342 | from pedestal run
|
|---|
| 343 | with closed camera lids for inner (left) and outer (right) pixels (in photo-electrons). }
|
|---|
| 344 | \label{fig:amp:relrms:run38993}
|
|---|
| 345 | \vspace{\floatsep}
|
|---|
| 346 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38995_RMSDiff.eps}
|
|---|
| 347 | \caption{MExtractTimeAndChargeSpline with integral over 2 slices: Difference pedestal RMS (per FADC slice)
|
|---|
| 348 | from pedestal run with galactic star background for inner (left)
|
|---|
| 349 | and outer (right) pixels (in photo-electrons).}
|
|---|
| 350 | \label{fig:amp:relrms:run38995}
|
|---|
| 351 | \vspace{\floatsep}
|
|---|
| 352 | \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38996_RMSDiff.eps}
|
|---|
| 353 | \caption{MExtractTimeAndChargeSpline with integral over 2 slices: Difference pedestal RMS (per FADC slice)
|
|---|
| 354 | from run with continuous light level: 100 for inner (left)
|
|---|
| 355 | and outer (right) pixels (in photo-electrons).}
|
|---|
| 356 | \label{fig:amp:relrms:run38996}
|
|---|
| 357 | \end{figure}
|
|---|
| 358 |
|
|---|
| 359 |
|
|---|
| 360 |
|
|---|
| 361 | %%% Local Variables:
|
|---|
| 362 | %%% mode: latex
|
|---|
| 363 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 364 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 365 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 366 | %%% TeX-master: "MAGIC_signal_reco."
|
|---|
| 367 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 368 | %%% TeX-master: "Pedestal"
|
|---|
| 369 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 370 | %%% TeX-master: "MAGIC_signal_reco."
|
|---|
| 371 | %%% TeX-master: "MAGIC_signal_reco"
|
|---|
| 372 | %%% End:
|
|---|