| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | void slaAmpqk ( double ra, double da, double amprms[21],
|
|---|
| 4 | double *rm, double *dm )
|
|---|
| 5 | /*
|
|---|
| 6 | ** - - - - - - - - -
|
|---|
| 7 | ** s l a A m p q k
|
|---|
| 8 | ** - - - - - - - - -
|
|---|
| 9 | **
|
|---|
| 10 | ** Convert star RA,Dec from geocentric apparent to mean place.
|
|---|
| 11 | **
|
|---|
| 12 | ** The mean coordinate system is the post IAU 1976 system,
|
|---|
| 13 | ** loosely called FK5.
|
|---|
| 14 | **
|
|---|
| 15 | ** Use of this routine is appropriate when efficiency is important
|
|---|
| 16 | ** and where many star positions are all to be transformed for
|
|---|
| 17 | ** one epoch and equinox. The star-independent parameters can be
|
|---|
| 18 | ** obtained by calling the slaMappa routine.
|
|---|
| 19 | **
|
|---|
| 20 | ** Given:
|
|---|
| 21 | ** ra double apparent RA (radians)
|
|---|
| 22 | ** da double apparent Dec (radians)
|
|---|
| 23 | **
|
|---|
| 24 | ** amprms double[21] star-independent mean-to-apparent parameters:
|
|---|
| 25 | **
|
|---|
| 26 | ** (0) time interval for proper motion (Julian years)
|
|---|
| 27 | ** (1-3) barycentric position of the Earth (AU)
|
|---|
| 28 | ** (4-6) heliocentric direction of the Earth (unit vector)
|
|---|
| 29 | ** (7) (grav rad Sun)*2/(Sun-Earth distance)
|
|---|
| 30 | ** (8-10) abv: barycentric Earth velocity in units of c
|
|---|
| 31 | ** (11) sqrt(1-v*v) where v=modulus(abv)
|
|---|
| 32 | ** (12-20) precession/nutation (3,3) matrix
|
|---|
| 33 | **
|
|---|
| 34 | ** Returned:
|
|---|
| 35 | ** *rm double mean RA (radians)
|
|---|
| 36 | ** *dm double mean Dec (radians)
|
|---|
| 37 | **
|
|---|
| 38 | ** References:
|
|---|
| 39 | ** 1984 Astronomical Almanac, pp B39-B41.
|
|---|
| 40 | ** (also Lederle & Schwan, Astron. Astrophys. 134, 1-6, 1984)
|
|---|
| 41 | **
|
|---|
| 42 | ** Notes:
|
|---|
| 43 | **
|
|---|
| 44 | ** 1) The accuracy is limited by the routine slaEvp, called
|
|---|
| 45 | ** by slaMappa, which computes the Earth position and
|
|---|
| 46 | ** velocity using the methods of Stumpff. The maximum
|
|---|
| 47 | ** error is about 0.3 milliarcsecond.
|
|---|
| 48 | **
|
|---|
| 49 | ** 2) Iterative techniques are used for the aberration and
|
|---|
| 50 | ** light deflection corrections so that the routines
|
|---|
| 51 | ** slaAmp (or slaAmpqk) and slaMap (or slaMapqk) are
|
|---|
| 52 | ** accurate inverses; even at the edge of the Sun's disc
|
|---|
| 53 | ** the discrepancy is only about 1 nanoarcsecond.
|
|---|
| 54 | **
|
|---|
| 55 | ** Called: slaDcs2c, slaDimxv, slaDvdv, slaDvn, slaDcc2s,
|
|---|
| 56 | ** slaDranrm
|
|---|
| 57 | **
|
|---|
| 58 | ** Last revision: 31 October 1993
|
|---|
| 59 | **
|
|---|
| 60 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 61 | */
|
|---|
| 62 | {
|
|---|
| 63 | double gr2e; /* (grav rad Sun)*2/(Sun-Earth distance) */
|
|---|
| 64 | double ab1; /* sqrt(1-v*v) where v=modulus of Earth vel */
|
|---|
| 65 | double ehn[3]; /* Earth position wrt Sun (unit vector, FK5) */
|
|---|
| 66 | double abv[3]; /* Earth velocity wrt SSB (c, FK5) */
|
|---|
| 67 | double p[3], p1[3], p2[3], p3[3]; /* work vectors */
|
|---|
| 68 | double ab1p1, p1dv, p1dvp1, w, pde, pdep1;
|
|---|
| 69 | int i, j;
|
|---|
| 70 |
|
|---|
| 71 | /* Unpack some of the parameters */
|
|---|
| 72 | gr2e = amprms[7];
|
|---|
| 73 | ab1 = amprms[11];
|
|---|
| 74 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 75 | ehn[i] = amprms[i + 4];
|
|---|
| 76 | abv[i] = amprms[i + 8];
|
|---|
| 77 | }
|
|---|
| 78 |
|
|---|
| 79 | /* Apparent RA,Dec to Cartesian */
|
|---|
| 80 | slaDcs2c ( ra, da, p3 );
|
|---|
| 81 |
|
|---|
| 82 | /* Precession and nutation */
|
|---|
| 83 | slaDimxv ( (double(*)[3]) &rms[12], p3, p2 );
|
|---|
| 84 |
|
|---|
| 85 | /* Aberration */
|
|---|
| 86 | ab1p1 = ab1 + 1.0;
|
|---|
| 87 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 88 | p1[i] = p2[i];
|
|---|
| 89 | }
|
|---|
| 90 | for ( j = 0; j < 2; j++ ) {
|
|---|
| 91 | p1dv = slaDvdv ( p1, abv );
|
|---|
| 92 | p1dvp1 = 1.0 + p1dv;
|
|---|
| 93 | w = 1.0 + p1dv / ab1p1;
|
|---|
| 94 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 95 | p1[i] = ( p1dvp1 * p2[i] - w * abv[i] ) / ab1;
|
|---|
| 96 | }
|
|---|
| 97 | slaDvn ( p1, p3, &w );
|
|---|
| 98 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 99 | p1[i] = p3[i];
|
|---|
| 100 | }
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | /* Light deflection */
|
|---|
| 104 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 105 | p[i] = p1[i];
|
|---|
| 106 | }
|
|---|
| 107 | for ( j = 0; j < 5; j++ ) {
|
|---|
| 108 | pde = slaDvdv ( p, ehn );
|
|---|
| 109 | pdep1 = 1.0 + pde;
|
|---|
| 110 | w = pdep1 - gr2e * pde;
|
|---|
| 111 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 112 | p[i] = ( pdep1 * p1[i] - gr2e * ehn[i] ) / w;
|
|---|
| 113 | }
|
|---|
| 114 | slaDvn ( p, p2, &w );
|
|---|
| 115 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 116 | p[i] = p2[i];
|
|---|
| 117 | }
|
|---|
| 118 | }
|
|---|
| 119 |
|
|---|
| 120 | /* Mean RA,Dec */
|
|---|
| 121 | slaDcc2s ( p, rm, dm );
|
|---|
| 122 | *rm = slaDranrm ( *rm );
|
|---|
| 123 | }
|
|---|