1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaAv2m ( float axvec[3], float rmat[3][3] )
|
---|
4 | /*
|
---|
5 | ** - - - - - - - -
|
---|
6 | ** s l a A v 2 m
|
---|
7 | ** - - - - - - - -
|
---|
8 | **
|
---|
9 | ** Form the rotation matrix corresponding to a given axial vector.
|
---|
10 | **
|
---|
11 | ** (single precision)
|
---|
12 | **
|
---|
13 | ** A rotation matrix describes a rotation about some arbitrary axis.
|
---|
14 | ** The axis is called the Euler axis, and the angle through which the
|
---|
15 | ** reference frame rotates is called the Euler angle. The axial
|
---|
16 | ** vector supplied to this routine has the same direction as the
|
---|
17 | ** Euler axis, and its magnitude is the Euler angle in radians.
|
---|
18 | **
|
---|
19 | ** Given:
|
---|
20 | ** axvec float[3] axial vector (radians)
|
---|
21 | **
|
---|
22 | ** Returned:
|
---|
23 | ** rmat float[3][3] rotation matrix
|
---|
24 | **
|
---|
25 | ** If axvec is null, the unit matrix is returned.
|
---|
26 | **
|
---|
27 | ** The reference frame rotates clockwise as seen looking along
|
---|
28 | ** the axial vector from the origin.
|
---|
29 | **
|
---|
30 | ** Last revision: 25 July 1993
|
---|
31 | **
|
---|
32 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
33 | */
|
---|
34 | {
|
---|
35 | double x, y, z, phi, s, c, w;
|
---|
36 |
|
---|
37 | /* Euler angle - magnitude of axial vector - and functions */
|
---|
38 | x = (double) axvec[0];
|
---|
39 | y = (double) axvec[1];
|
---|
40 | z = (double) axvec[2];
|
---|
41 | phi = sqrt ( x * x + y * y + z * z );
|
---|
42 | s = sin ( phi );
|
---|
43 | c = cos ( phi );
|
---|
44 | w = 1.0 - c;
|
---|
45 |
|
---|
46 | /* Euler axis - direction of axial vector (perhaps null) */
|
---|
47 | if ( phi != 0.0 ) {
|
---|
48 | x = x / phi;
|
---|
49 | y = y / phi;
|
---|
50 | z = z / phi;
|
---|
51 | }
|
---|
52 |
|
---|
53 | /* Compute the rotation matrix */
|
---|
54 | rmat[0][0] = (float) ( x * x * w + c );
|
---|
55 | rmat[0][1] = (float) ( x * y * w + z * s );
|
---|
56 | rmat[0][2] = (float) ( x * z * w - y * s );
|
---|
57 | rmat[1][0] = (float) ( x * y * w - z * s );
|
---|
58 | rmat[1][1] = (float) ( y * y * w + c );
|
---|
59 | rmat[1][2] = (float) ( y * z * w + x * s );
|
---|
60 | rmat[2][0] = (float) ( x * z * w + y * s );
|
---|
61 | rmat[2][1] = (float) ( y * z * w - x * s );
|
---|
62 | rmat[2][2] = (float) ( z * z * w + c );
|
---|
63 | }
|
---|