| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | double slaDbear ( double a1, double b1, double a2, double b2 ) | 
|---|
| 4 | /* | 
|---|
| 5 | **  - - - - - - - - - | 
|---|
| 6 | **   s l a D b e a r | 
|---|
| 7 | **  - - - - - - - - - | 
|---|
| 8 | ** | 
|---|
| 9 | **  Bearing (position angle) of one point on a sphere relative | 
|---|
| 10 | **  to another. | 
|---|
| 11 | ** | 
|---|
| 12 | **  (double precision) | 
|---|
| 13 | ** | 
|---|
| 14 | **  Given: | 
|---|
| 15 | **     a1,b1    double    spherical coordinates of one point | 
|---|
| 16 | **     a2,b2    double    spherical coordinates of the other point | 
|---|
| 17 | ** | 
|---|
| 18 | **  (The spherical coordinates are RA,Dec, Long,Lat etc, in radians.) | 
|---|
| 19 | ** | 
|---|
| 20 | **  The result is the bearing (position angle), in radians, of point | 
|---|
| 21 | **  a2,b2 as seen from point a1,b1.  It is in the range +/- pi.  The | 
|---|
| 22 | **  sense is such that if a2,b2 is a small distance east of a1,b1, | 
|---|
| 23 | **  the bearing is about +pi/2.  Zero is returned if the two points | 
|---|
| 24 | **  are coincident. | 
|---|
| 25 | ** | 
|---|
| 26 | **  If either b-coordinate is outside the range +/- pi/2, the | 
|---|
| 27 | **  result may correspond to "the long way round". | 
|---|
| 28 | ** | 
|---|
| 29 | **  The routine slaDpav performs an equivalent function except | 
|---|
| 30 | **  that the points are specified in the form of Cartesian unit | 
|---|
| 31 | **  vectors. | 
|---|
| 32 | ** | 
|---|
| 33 | **  Last revision:   8 December 1996 | 
|---|
| 34 | ** | 
|---|
| 35 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 36 | */ | 
|---|
| 37 | { | 
|---|
| 38 | double da, x, y; | 
|---|
| 39 |  | 
|---|
| 40 | da = a2 - a1; | 
|---|
| 41 | y = sin ( da ) * cos ( b2 ); | 
|---|
| 42 | x = sin ( b2 ) * cos ( b1 ) - cos ( b2 ) * sin ( b1 ) * cos ( da ); | 
|---|
| 43 | return ( x != 0.0 || y != 0.0 ) ? atan2 ( y, x ) : 0.0; | 
|---|
| 44 | } | 
|---|