source: trunk/MagicSoft/slalib/deuler.c@ 19942

Last change on this file since 19942 was 731, checked in by tbretz, 24 years ago
*** empty log message ***
  • Property svn:executable set to *
File size: 4.3 KB
Line 
1#include "slalib.h"
2#include "slamac.h"
3#include <string.h>
4void slaDeuler ( char *order, double phi, double theta,
5 double psi, double rmat[3][3] )
6/*
7** - - - - - - - - - -
8** s l a D e u l e r
9** - - - - - - - - - -
10**
11** Form a rotation matrix from the Euler angles - three successive
12** rotations about specified Cartesian axes.
13**
14** (double precision)
15**
16** Given:
17** *order char specifies about which axes the rotations occur
18** phi double 1st rotation (radians)
19** theta double 2nd rotation ( " )
20** psi double 3rd rotation ( " )
21**
22** Returned:
23** rmat double[3][3] rotation matrix
24**
25** A rotation is positive when the reference frame rotates
26** anticlockwise as seen looking towards the origin from the
27** positive region of the specified axis.
28**
29** The characters of order define which axes the three successive
30** rotations are about. A typical value is 'zxz', indicating that
31** rmat is to become the direction cosine matrix corresponding to
32** rotations of the reference frame through phi radians about the
33** old z-axis, followed by theta radians about the resulting x-axis,
34** then psi radians about the resulting z-axis.
35**
36** The axis names can be any of the following, in any order or
37** combination: x, y, z, uppercase or lowercase, 1, 2, 3. Normal
38** axis labelling/numbering conventions apply; the xyz (=123)
39** triad is right-handed. Thus, the 'zxz' example given above
40** could be written 'zxz' or '313' (or even 'zxz' or '3xz'). Order
41** is terminated by length or by the first unrecognized character.
42**
43** Fewer than three rotations are acceptable, in which case the later
44** angle arguments are ignored. Zero rotations leaves rmat set to the
45** identity matrix.
46**
47** Last revision: 9 December 1996
48**
49** Copyright P.T.Wallace. All rights reserved.
50*/
51{
52 int j, i, l, n, k;
53 double result[3][3], rotn[3][3], angle, s, c , w, wm[3][3];
54 char axis;
55
56/* Initialize result matrix */
57 for ( j = 0; j < 3; j++ ) {
58 for ( i = 0; i < 3; i++ ) {
59 result[i][j] = ( i == j ) ? 1.0 : 0.0;
60 }
61 }
62
63/* Establish length of axis string */
64 l = strlen ( order );
65
66/* Look at each character of axis string until finished */
67 for ( n = 0; n < 3; n++ ) {
68 if ( n <= l ) {
69
70 /* Initialize rotation matrix for the current rotation */
71 for ( j = 0; j < 3; j++ ) {
72 for ( i = 0; i < 3; i++ ) {
73 rotn[i][j] = ( i == j ) ? 1.0 : 0.0;
74 }
75 }
76
77 /* Pick up the appropriate Euler angle and take sine & cosine */
78 switch ( n ) {
79 case 0 :
80 angle = phi;
81 break;
82 case 1 :
83 angle = theta;
84 break;
85 default:
86 angle = psi;
87 break;
88 }
89 s = sin ( angle );
90 c = cos ( angle );
91
92 /* Identify the axis */
93 axis = order[n];
94 if ( ( axis == 'X' ) || ( axis == 'x' ) || ( axis == '1' ) ) {
95
96 /* Matrix for x-rotation */
97 rotn[1][1] = c;
98 rotn[1][2] = s;
99 rotn[2][1] = -s;
100 rotn[2][2] = c;
101 }
102 else if ( ( axis == 'Y' ) || ( axis == 'y' ) || ( axis == '2' ) ) {
103
104 /* Matrix for y-rotation */
105 rotn[0][0] = c;
106 rotn[0][2] = -s;
107 rotn[2][0] = s;
108 rotn[2][2] = c;
109 }
110 else if ( ( axis == 'Z' ) || ( axis == 'z' ) || ( axis == '3' ) ) {
111
112 /* Matrix for z-rotation */
113 rotn[0][0] = c;
114 rotn[0][1] = s;
115 rotn[1][0] = -s;
116 rotn[1][1] = c;
117 } else {
118
119 /* Unrecognized character - fake end of string */
120 l = 0;
121 }
122
123 /* Apply the current rotation (matrix rotn x matrix result) */
124 for ( i = 0; i < 3; i++ ) {
125 for ( j = 0; j < 3; j++ ) {
126 w = 0.0;
127 for ( k = 0; k < 3; k++ ) {
128 w += rotn[i][k] * result[k][j];
129 }
130 wm[i][j] = w;
131 }
132 }
133 for ( j = 0; j < 3; j++ ) {
134 for ( i= 0; i < 3; i++ ) {
135 result[i][j] = wm[i][j];
136 }
137 }
138 }
139 }
140
141/* Copy the result */
142 for ( j = 0; j < 3; j++ ) {
143 for ( i = 0; i < 3; i++ ) {
144 rmat[i][j] = result[i][j];
145 }
146 }
147}
Note: See TracBrowser for help on using the repository browser.