source: trunk/MagicSoft/slalib/dmat.c@ 11169

Last change on this file since 11169 was 731, checked in by tbretz, 24 years ago
*** empty log message ***
  • Property svn:executable set to *
File size: 3.9 KB
Line 
1#include "slalib.h"
2#include "slamac.h"
3void slaDmat ( int n, double *a, double *y, double *d, int *jf, int *iw)
4/*
5** - - - - - - - -
6** s l a D m a t
7** - - - - - - - -
8**
9** Matrix inversion & solution of simultaneous equations.
10**
11** (double precision)
12**
13** For the set of n simultaneous equations in n unknowns:
14** a.y = x
15**
16** where:
17** a is a non-singular n x n matrix
18** y is the vector of n unknowns
19** x is the known vector
20**
21** slaDmat computes:
22** the inverse of matrix a
23** the determinant of matrix a
24** the vector of n unknowns
25**
26** Arguments:
27**
28** symbol type dimension before after
29**
30** n int no. of unknowns unchanged
31** *a double [n][n] matrix inverse
32** *y double [n] vector solution
33** *d double - determinant
34** > *jf int - singularity flag
35** *iw int [n] - workspace
36**
37**
38** > jf is the singularity flag. If the matrix is non-singular,
39** jf=0 is returned. If the matrix is singular, jf=-1 & d=0.0 are
40** returned. In the latter case, the contents of array a on return
41** are undefined.
42**
43** Algorithm:
44** Gaussian elimination with partial pivoting.
45**
46** Speed:
47** Very fast.
48**
49** Accuracy:
50** Fairly accurate - errors 1 to 4 times those of routines optimized
51** for accuracy.
52**
53** Example call (note handling of "adjustable dimension" 2D array):
54**
55** double a[MP][MP], v[MP], d;
56** int j, iw[MP];
57** :
58** slaDmat ( n, (double *) a, v, &d, &j, iw );
59**
60** Last revision: 20 February 1995
61**
62** Copyright P.T.Wallace. All rights reserved.
63*/
64
65#define TINY 1e-20
66
67{
68 int k, imx, i, j, ki;
69 double amx, t, yk;
70
71/* Pointers to beginnings of rows in matrix a[n][n] */
72
73 double *ak, /* row k */
74 *ai, /* row i */
75 *aimx; /* row imx */
76
77 *jf = 0;
78 *d = 1.0;
79 for ( k = 0, ak = a; k < n; k++, ak += n ) {
80 amx = fabs ( ak[k] );
81 imx = k;
82 aimx = ak;
83 if ( k != n ) {
84 for ( i = k + 1, ai = ak + n; i < n; i++, ai += n ) {
85 t = fabs ( ai[k] );
86 if ( t > amx ) {
87 amx = t;
88 imx = i;
89 aimx = ai;
90 }
91 }
92 }
93 if ( amx < TINY ) {
94 *jf = -1;
95 } else {
96 if ( imx != k ) {
97 for ( j = 0; j < n; j++ ) {
98 t = ak[j];
99 ak[j] = aimx[j];
100 aimx[j] = t;
101 }
102 t = y[k];
103 y[k] = y[imx];
104 y[imx] = t;
105 *d = - *d;
106 }
107 iw[k] = imx;
108 *d *= ak[k];
109 if ( fabs ( *d ) < TINY ) {
110 *jf = -1;
111 } else {
112 ak[k] = 1.0 / ak[k];
113 for ( j = 0; j < n; j++ ) {
114 if ( j != k ) {
115 ak[j] *= ak[k];
116 }
117 }
118 yk = y[k] * ak[k];
119 y[k] = yk;
120 for ( i = 0, ai = a; i < n; i++, ai += n ) {
121 if ( i != k ) {
122 for ( j = 0; j < n; j++ ) {
123 if ( j != k ) {
124 ai[j] -= ai[k] * ak[j];
125 }
126 }
127 y[i] -= ai[k] * yk;
128 }
129 }
130 for ( i = 0, ai = a; i < n; i++, ai += n ) {
131 if ( i != k ) {
132 ai[k] *= - ak[k];
133 }
134 }
135 }
136 }
137 }
138 if ( *jf != 0 ) {
139 *d = 0.0;
140 } else {
141 for ( k = n; k-- > 0; ) {
142 ki = iw[k];
143 if ( k != ki ) {
144 for ( i = 0, ai = a; i < n; i++, ai += n ) {
145 t = ai[k];
146 ai[k] = ai[ki];
147 ai[ki] = t;
148 }
149 }
150 }
151 }
152}
Note: See TracBrowser for help on using the repository browser.