| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaDmat ( int n, double *a, double *y, double *d, int *jf, int *iw) | 
|---|
| 4 | /* | 
|---|
| 5 | **  - - - - - - - - | 
|---|
| 6 | **   s l a D m a t | 
|---|
| 7 | **  - - - - - - - - | 
|---|
| 8 | ** | 
|---|
| 9 | **  Matrix inversion & solution of simultaneous equations. | 
|---|
| 10 | ** | 
|---|
| 11 | **  (double precision) | 
|---|
| 12 | ** | 
|---|
| 13 | **  For the set of n simultaneous equations in n unknowns: | 
|---|
| 14 | **     a.y = x | 
|---|
| 15 | ** | 
|---|
| 16 | **  where: | 
|---|
| 17 | **     a is a non-singular n x n matrix | 
|---|
| 18 | **     y is the vector of n unknowns | 
|---|
| 19 | **     x is the known vector | 
|---|
| 20 | ** | 
|---|
| 21 | **  slaDmat computes: | 
|---|
| 22 | **     the inverse of matrix a | 
|---|
| 23 | **     the determinant of matrix a | 
|---|
| 24 | **     the vector of n unknowns | 
|---|
| 25 | ** | 
|---|
| 26 | **  Arguments: | 
|---|
| 27 | ** | 
|---|
| 28 | **     symbol  type dimension           before              after | 
|---|
| 29 | ** | 
|---|
| 30 | **       n      int                  no. of unknowns       unchanged | 
|---|
| 31 | **       *a     double  [n][n]           matrix             inverse | 
|---|
| 32 | **       *y     double   [n]              vector            solution | 
|---|
| 33 | **       *d     double                      -             determinant | 
|---|
| 34 | **    >  *jf    int                         -           singularity flag | 
|---|
| 35 | **       *iw    int      [n]                -              workspace | 
|---|
| 36 | ** | 
|---|
| 37 | ** | 
|---|
| 38 | **    >  jf is the singularity flag.  If the matrix is non-singular, | 
|---|
| 39 | **       jf=0 is returned.  If the matrix is singular, jf=-1 & d=0.0 are | 
|---|
| 40 | **       returned.  In the latter case, the contents of array a on return | 
|---|
| 41 | **       are undefined. | 
|---|
| 42 | ** | 
|---|
| 43 | **  Algorithm: | 
|---|
| 44 | **     Gaussian elimination with partial pivoting. | 
|---|
| 45 | ** | 
|---|
| 46 | **  Speed: | 
|---|
| 47 | **     Very fast. | 
|---|
| 48 | ** | 
|---|
| 49 | **  Accuracy: | 
|---|
| 50 | **     Fairly accurate - errors 1 to 4 times those of routines optimized | 
|---|
| 51 | **     for accuracy. | 
|---|
| 52 | ** | 
|---|
| 53 | **  Example call (note handling of "adjustable dimension" 2D array): | 
|---|
| 54 | ** | 
|---|
| 55 | **     double a[MP][MP], v[MP], d; | 
|---|
| 56 | **     int j, iw[MP]; | 
|---|
| 57 | **      : | 
|---|
| 58 | **     slaDmat ( n, (double *) a, v, &d, &j, iw ); | 
|---|
| 59 | ** | 
|---|
| 60 | **  Last revision:   20 February 1995 | 
|---|
| 61 | ** | 
|---|
| 62 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 63 | */ | 
|---|
| 64 |  | 
|---|
| 65 | #define TINY 1e-20 | 
|---|
| 66 |  | 
|---|
| 67 | { | 
|---|
| 68 | int k, imx, i, j, ki; | 
|---|
| 69 | double amx, t, yk; | 
|---|
| 70 |  | 
|---|
| 71 | /* Pointers to beginnings of rows in matrix a[n][n] */ | 
|---|
| 72 |  | 
|---|
| 73 | double *ak,    /* row k    */ | 
|---|
| 74 | *ai,    /* row i    */ | 
|---|
| 75 | *aimx;  /* row imx  */ | 
|---|
| 76 |  | 
|---|
| 77 | *jf = 0; | 
|---|
| 78 | *d = 1.0; | 
|---|
| 79 | for ( k = 0, ak = a; k < n; k++, ak += n ) { | 
|---|
| 80 | amx = fabs ( ak[k] ); | 
|---|
| 81 | imx = k; | 
|---|
| 82 | aimx = ak; | 
|---|
| 83 | if ( k != n ) { | 
|---|
| 84 | for ( i = k + 1, ai = ak + n; i < n; i++, ai += n ) { | 
|---|
| 85 | t = fabs ( ai[k] ); | 
|---|
| 86 | if ( t > amx ) { | 
|---|
| 87 | amx = t; | 
|---|
| 88 | imx = i; | 
|---|
| 89 | aimx = ai; | 
|---|
| 90 | } | 
|---|
| 91 | } | 
|---|
| 92 | } | 
|---|
| 93 | if ( amx < TINY ) { | 
|---|
| 94 | *jf = -1; | 
|---|
| 95 | } else { | 
|---|
| 96 | if ( imx != k ) { | 
|---|
| 97 | for ( j = 0; j < n; j++ ) { | 
|---|
| 98 | t = ak[j]; | 
|---|
| 99 | ak[j] = aimx[j]; | 
|---|
| 100 | aimx[j] = t; | 
|---|
| 101 | } | 
|---|
| 102 | t = y[k]; | 
|---|
| 103 | y[k] = y[imx]; | 
|---|
| 104 | y[imx] = t; | 
|---|
| 105 | *d = - *d; | 
|---|
| 106 | } | 
|---|
| 107 | iw[k] = imx; | 
|---|
| 108 | *d *= ak[k]; | 
|---|
| 109 | if ( fabs ( *d ) < TINY ) { | 
|---|
| 110 | *jf = -1; | 
|---|
| 111 | } else { | 
|---|
| 112 | ak[k] = 1.0 / ak[k]; | 
|---|
| 113 | for ( j = 0; j < n; j++ ) { | 
|---|
| 114 | if ( j != k ) { | 
|---|
| 115 | ak[j] *= ak[k]; | 
|---|
| 116 | } | 
|---|
| 117 | } | 
|---|
| 118 | yk = y[k] * ak[k]; | 
|---|
| 119 | y[k] = yk; | 
|---|
| 120 | for ( i = 0, ai = a; i < n; i++, ai += n ) { | 
|---|
| 121 | if ( i != k ) { | 
|---|
| 122 | for ( j = 0; j < n; j++ ) { | 
|---|
| 123 | if ( j != k ) { | 
|---|
| 124 | ai[j] -= ai[k] * ak[j]; | 
|---|
| 125 | } | 
|---|
| 126 | } | 
|---|
| 127 | y[i] -= ai[k] * yk; | 
|---|
| 128 | } | 
|---|
| 129 | } | 
|---|
| 130 | for ( i = 0, ai = a; i < n; i++, ai += n ) { | 
|---|
| 131 | if ( i != k ) { | 
|---|
| 132 | ai[k] *= - ak[k]; | 
|---|
| 133 | } | 
|---|
| 134 | } | 
|---|
| 135 | } | 
|---|
| 136 | } | 
|---|
| 137 | } | 
|---|
| 138 | if ( *jf != 0 ) { | 
|---|
| 139 | *d = 0.0; | 
|---|
| 140 | } else { | 
|---|
| 141 | for ( k = n; k-- > 0; ) { | 
|---|
| 142 | ki = iw[k]; | 
|---|
| 143 | if ( k != ki ) { | 
|---|
| 144 | for ( i = 0, ai = a; i < n; i++, ai += n ) { | 
|---|
| 145 | t = ai[k]; | 
|---|
| 146 | ai[k] = ai[ki]; | 
|---|
| 147 | ai[ki] = t; | 
|---|
| 148 | } | 
|---|
| 149 | } | 
|---|
| 150 | } | 
|---|
| 151 | } | 
|---|
| 152 | } | 
|---|