| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | double slaDpav ( double v1 [ 3 ], double v2 [ 3 ] )
|
|---|
| 4 | /*
|
|---|
| 5 | ** - - - - - - - -
|
|---|
| 6 | ** s l a D p a v
|
|---|
| 7 | ** - - - - - - - -
|
|---|
| 8 | **
|
|---|
| 9 | ** Position angle of one celestial direction with respect to another.
|
|---|
| 10 | **
|
|---|
| 11 | ** (double precision)
|
|---|
| 12 | **
|
|---|
| 13 | ** Given:
|
|---|
| 14 | ** v1 double[3] direction cosines of one point
|
|---|
| 15 | ** v2 double[3] direction cosines of the other point
|
|---|
| 16 | **
|
|---|
| 17 | ** (The coordinate frames correspond to RA,Dec, Long,Lat etc.)
|
|---|
| 18 | **
|
|---|
| 19 | ** The result is the bearing (position angle), in radians, of point
|
|---|
| 20 | ** v2 with respect to point v1. It is in the range +/- pi. The
|
|---|
| 21 | ** sense is such that if v2 is a small distance east of v1, the
|
|---|
| 22 | ** bearing is about +pi/2. Zero is returned if the two points
|
|---|
| 23 | ** are coincident.
|
|---|
| 24 | **
|
|---|
| 25 | ** The vectors v1 and v2 need not be unit vectors.
|
|---|
| 26 | **
|
|---|
| 27 | ** The routine slaDbear performs an equivalent function except
|
|---|
| 28 | ** that the points are specified in the form of spherical
|
|---|
| 29 | ** coordinates.
|
|---|
| 30 | **
|
|---|
| 31 | ** Last revision: 12 December 1996
|
|---|
| 32 | **
|
|---|
| 33 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 34 | */
|
|---|
| 35 | {
|
|---|
| 36 | double x0, y0, z0, w, x1, y1, z1, s, c;
|
|---|
| 37 |
|
|---|
| 38 |
|
|---|
| 39 | /* Unit vector to point 1. */
|
|---|
| 40 | x0 = v1 [ 0 ];
|
|---|
| 41 | y0 = v1 [ 1 ];
|
|---|
| 42 | z0 = v1 [ 2 ];
|
|---|
| 43 | w = sqrt ( x0 * x0 + y0 * y0 + z0 * z0 );
|
|---|
| 44 | if ( w != 0.0 ) { x0 /= w; y0 /= w; z0 /= w; }
|
|---|
| 45 |
|
|---|
| 46 | /* Vector to point 2. */
|
|---|
| 47 | x1 = v2 [ 0 ];
|
|---|
| 48 | y1 = v2 [ 1 ];
|
|---|
| 49 | z1 = v2 [ 2 ];
|
|---|
| 50 |
|
|---|
| 51 | /* Position angle. */
|
|---|
| 52 | s = y1 * x0 - x1 * y0;
|
|---|
| 53 | c = z1 * ( x0 * x0 + y0 * y0 ) - z0 * ( x1 * x0 + y1 * y0 );
|
|---|
| 54 | return ( s != 0.0 || c != 0.0 ) ? atan2 ( s, c ) : 0.0;
|
|---|
| 55 | }
|
|---|