| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | double slaDpav ( double v1 [ 3 ], double v2 [ 3 ] ) | 
|---|
| 4 | /* | 
|---|
| 5 | **  - - - - - - - - | 
|---|
| 6 | **   s l a D p a v | 
|---|
| 7 | **  - - - - - - - - | 
|---|
| 8 | ** | 
|---|
| 9 | **  Position angle of one celestial direction with respect to another. | 
|---|
| 10 | ** | 
|---|
| 11 | **  (double precision) | 
|---|
| 12 | ** | 
|---|
| 13 | **  Given: | 
|---|
| 14 | **     v1    double[3]    direction cosines of one point | 
|---|
| 15 | **     v2    double[3]    direction cosines of the other point | 
|---|
| 16 | ** | 
|---|
| 17 | **  (The coordinate frames correspond to RA,Dec, Long,Lat etc.) | 
|---|
| 18 | ** | 
|---|
| 19 | **  The result is the bearing (position angle), in radians, of point | 
|---|
| 20 | **  v2 with respect to point v1.  It is in the range +/- pi.  The | 
|---|
| 21 | **  sense is such that if v2 is a small distance east of v1, the | 
|---|
| 22 | **  bearing is about +pi/2.  Zero is returned if the two points | 
|---|
| 23 | **  are coincident. | 
|---|
| 24 | ** | 
|---|
| 25 | **  The vectors v1 and v2 need not be unit vectors. | 
|---|
| 26 | ** | 
|---|
| 27 | **  The routine slaDbear performs an equivalent function except | 
|---|
| 28 | **  that the points are specified in the form of spherical | 
|---|
| 29 | **  coordinates. | 
|---|
| 30 | ** | 
|---|
| 31 | **  Last revision:   12 December 1996 | 
|---|
| 32 | ** | 
|---|
| 33 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 34 | */ | 
|---|
| 35 | { | 
|---|
| 36 | double x0, y0, z0, w, x1, y1, z1, s, c; | 
|---|
| 37 |  | 
|---|
| 38 |  | 
|---|
| 39 | /* Unit vector to point 1. */ | 
|---|
| 40 | x0 = v1 [ 0 ]; | 
|---|
| 41 | y0 = v1 [ 1 ]; | 
|---|
| 42 | z0 = v1 [ 2 ]; | 
|---|
| 43 | w = sqrt ( x0 * x0 + y0 * y0 + z0 * z0 ); | 
|---|
| 44 | if ( w != 0.0 ) { x0 /= w; y0 /= w; z0 /= w; } | 
|---|
| 45 |  | 
|---|
| 46 | /* Vector to point 2. */ | 
|---|
| 47 | x1 = v2 [ 0 ]; | 
|---|
| 48 | y1 = v2 [ 1 ]; | 
|---|
| 49 | z1 = v2 [ 2 ]; | 
|---|
| 50 |  | 
|---|
| 51 | /* Position angle. */ | 
|---|
| 52 | s = y1 * x0 - x1 * y0; | 
|---|
| 53 | c = z1 * ( x0 * x0 + y0 * y0 ) - z0 * ( x1 * x0 + y1 * y0 ); | 
|---|
| 54 | return ( s != 0.0 || c != 0.0 ) ? atan2 ( s, c ) : 0.0; | 
|---|
| 55 | } | 
|---|