1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaDtps2c ( double xi, double eta, double ra, double dec,
|
---|
4 | double *raz1, double *decz1,
|
---|
5 | double *raz2, double *decz2, int *n )
|
---|
6 | /*
|
---|
7 | ** - - - - - - - - - -
|
---|
8 | ** s l a D t p s 2 c
|
---|
9 | ** - - - - - - - - - -
|
---|
10 | **
|
---|
11 | ** From the tangent plane coordinates of a star of known RA,Dec,
|
---|
12 | ** determine the RA,Dec of the tangent point.
|
---|
13 | **
|
---|
14 | ** (double precision)
|
---|
15 | **
|
---|
16 | ** Given:
|
---|
17 | ** xi,eta double tangent plane rectangular coordinates
|
---|
18 | ** ra,dec double spherical coordinates
|
---|
19 | **
|
---|
20 | ** Returned:
|
---|
21 | ** *raz1,*decz1 double spherical coordinates of TP, solution 1
|
---|
22 | ** *raz2,*decz2 double spherical coordinates of TP, solution 2
|
---|
23 | ** *n int number of solutions:
|
---|
24 | ** 0 = no solutions returned (note 2)
|
---|
25 | ** 1 = only the first solution is useful (note 3)
|
---|
26 | ** 2 = both solutions are useful (note 3)
|
---|
27 | **
|
---|
28 | **
|
---|
29 | ** Notes:
|
---|
30 | **
|
---|
31 | ** 1 The raz1 and raz2 values are returned in the range 0-2pi.
|
---|
32 | **
|
---|
33 | ** 2 Cases where there is no solution can only arise near the poles.
|
---|
34 | ** For example, it is clearly impossible for a star at the pole
|
---|
35 | ** itself to have a non-zero xi value, and hence it is
|
---|
36 | ** meaningless to ask where the tangent point would have to be
|
---|
37 | ** to bring about this combination of xi and dec.
|
---|
38 | **
|
---|
39 | ** 3 Also near the poles, cases can arise where there are two useful
|
---|
40 | ** solutions. The argument n indicates whether the second of the
|
---|
41 | ** two solutions returned is useful; n=1 indicates only one useful
|
---|
42 | ** solution, the usual case; under these circumstances, the second
|
---|
43 | ** solution corresponds to the "over-the-pole" case, and this is
|
---|
44 | ** reflected in the values of raz2 and decz2 which are returned.
|
---|
45 | **
|
---|
46 | ** 4 The decz1 and decz2 values are returned in the range +/-pi, but
|
---|
47 | ** in the usual, non-pole-crossing, case, the range is +/-pi/2.
|
---|
48 | **
|
---|
49 | ** 5 This routine is the spherical equivalent of the routine slaDtpv2c.
|
---|
50 | **
|
---|
51 | ** Called: slaDranrm
|
---|
52 | **
|
---|
53 | ** Last revision: 5 June 1995
|
---|
54 | **
|
---|
55 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
56 | */
|
---|
57 | {
|
---|
58 | double x2, y2, sd, cd, sdf, r2, r, s, c;
|
---|
59 |
|
---|
60 | x2 = xi * xi;
|
---|
61 | y2 = eta * eta;
|
---|
62 | sd = sin ( dec );
|
---|
63 | cd = cos ( dec );
|
---|
64 | sdf = sd * sqrt ( 1.0 + x2 + y2 );
|
---|
65 | r2 = cd * cd * ( 1.0 + y2 ) - sd * sd * x2;
|
---|
66 | if ( r2 >= 0.0 ) {
|
---|
67 | r = sqrt ( r2 );
|
---|
68 | s = sdf - eta * r;
|
---|
69 | c = sdf * eta + r;
|
---|
70 | if ( xi == 0.0 && r == 0.0 ) {
|
---|
71 | r = 1.0;
|
---|
72 | }
|
---|
73 | *raz1 = slaDranrm ( ra - atan2 ( xi, r ) );
|
---|
74 | *decz1 = atan2 ( s, c );
|
---|
75 | r = -r;
|
---|
76 | s = sdf - eta * r;
|
---|
77 | c = sdf * eta + r;
|
---|
78 | *raz2 = slaDranrm ( ra - atan2 ( xi, r ) );
|
---|
79 | *decz2 = atan2 ( s, c );
|
---|
80 | *n = ( fabs ( sdf ) < 1.0 ) ? 1 : 2;
|
---|
81 | } else {
|
---|
82 | *n = 0;
|
---|
83 | }
|
---|
84 | }
|
---|