| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | void slaEl2ue ( double date, int jform, double epoch, double orbinc,
|
|---|
| 4 | double anode, double perih, double aorq, double e,
|
|---|
| 5 | double aorl, double dm, double u[], int *jstat )
|
|---|
| 6 | /*
|
|---|
| 7 | ** - - - - - - - - -
|
|---|
| 8 | ** s l a E l 2 u e
|
|---|
| 9 | ** - - - - - - - - -
|
|---|
| 10 | **
|
|---|
| 11 | ** Transform conventional osculating orbital elements into "universal" form.
|
|---|
| 12 | **
|
|---|
| 13 | ** Given:
|
|---|
| 14 | ** date double epoch (TT MJD) of osculation (Note 3)
|
|---|
| 15 | ** jform int choice of element set (1-3, Note 6)
|
|---|
| 16 | ** epoch double epoch (TT MJD) of the elements
|
|---|
| 17 | ** orbinc double inclination (radians)
|
|---|
| 18 | ** anode double longitude of the ascending node (radians)
|
|---|
| 19 | ** perih double longitude or argument of perihelion (radians)
|
|---|
| 20 | ** aorq double mean distance or perihelion distance (AU)
|
|---|
| 21 | ** e double eccentricity
|
|---|
| 22 | ** aorl double mean anomaly or longitude (radians, jform=1,2 only)
|
|---|
| 23 | ** dm double daily motion (radians, jform=1 only)
|
|---|
| 24 | **
|
|---|
| 25 | ** Returned:
|
|---|
| 26 | ** u double[13] universal orbital elements (Note 1)
|
|---|
| 27 | **
|
|---|
| 28 | ** [0] combined mass (M+m)
|
|---|
| 29 | ** [1] total energy of the orbit (alpha)
|
|---|
| 30 | ** [2] reference (osculating) epoch (t0)
|
|---|
| 31 | ** [3-5] position at reference epoch (r0)
|
|---|
| 32 | ** [6-8] velocity at reference epoch (v0)
|
|---|
| 33 | ** [9] heliocentric distance at reference epoch
|
|---|
| 34 | ** [10] r0.v0
|
|---|
| 35 | ** [11] date (t)
|
|---|
| 36 | ** [12] universal eccentric anomaly (psi) of date, approx
|
|---|
| 37 | **
|
|---|
| 38 | ** jstat int* status: 0 = OK
|
|---|
| 39 | ** -1 = illegal jform
|
|---|
| 40 | ** -2 = illegal e
|
|---|
| 41 | ** -3 = illegal aorq
|
|---|
| 42 | ** -4 = illegal dm
|
|---|
| 43 | ** -5 = numerical error
|
|---|
| 44 | **
|
|---|
| 45 | ** Called: slaUe2pv, slaPv2ue
|
|---|
| 46 | **
|
|---|
| 47 | ** Notes
|
|---|
| 48 | **
|
|---|
| 49 | ** 1 The "universal" elements are those which define the orbit for the
|
|---|
| 50 | ** purposes of the method of universal variables (see reference).
|
|---|
| 51 | ** They consist of the combined mass of the two bodies, an epoch,
|
|---|
| 52 | ** and the position and velocity vectors (arbitrary reference frame)
|
|---|
| 53 | ** at that epoch. The parameter set used here includes also various
|
|---|
| 54 | ** quantities that can, in fact, be derived from the other
|
|---|
| 55 | ** information. This approach is taken to avoiding unnecessary
|
|---|
| 56 | ** computation and loss of accuracy. The supplementary quantities
|
|---|
| 57 | ** are (i) alpha, which is proportional to the total energy of the
|
|---|
| 58 | ** orbit, (ii) the heliocentric distance at epoch, (iii) the
|
|---|
| 59 | ** outwards component of the velocity at the given epoch, (iv) an
|
|---|
| 60 | ** estimate of psi, the "universal eccentric anomaly" at a given
|
|---|
| 61 | ** date and (v) that date.
|
|---|
| 62 | **
|
|---|
| 63 | ** 2 The companion routine is slaUe2pv. This takes the set of numbers
|
|---|
| 64 | ** that the present routine outputs and uses them to derive the
|
|---|
| 65 | ** object's position and velocity. A single prediction requires one
|
|---|
| 66 | ** call to the present routine followed by one call to slaUe2pv;
|
|---|
| 67 | ** for convenience, the two calls are packaged as the routine
|
|---|
| 68 | ** slaPlanel. Multiple predictions may be made by again calling the
|
|---|
| 69 | ** present routine once, but then calling slaUe2pv multiple times,
|
|---|
| 70 | ** which is faster than multiple calls to slaPlanel.
|
|---|
| 71 | **
|
|---|
| 72 | ** 3 date is the epoch of osculation. It is in the TT timescale
|
|---|
| 73 | ** (formerly Ephemeris Time, ET) and is a Modified Julian Date
|
|---|
| 74 | ** (JD-2400000.5).
|
|---|
| 75 | **
|
|---|
| 76 | ** 4 The supplied orbital elements are with respect to the J2000
|
|---|
| 77 | ** ecliptic and equinox. The position and velocity parameters
|
|---|
| 78 | ** returned in the array u are with respect to the mean equator and
|
|---|
| 79 | ** equinox of epoch J2000, and are for the perihelion prior to the
|
|---|
| 80 | ** specified epoch.
|
|---|
| 81 | **
|
|---|
| 82 | ** 5 The universal elements returned in the array u are in canonical
|
|---|
| 83 | ** units (solar masses, AU and canonical days).
|
|---|
| 84 | **
|
|---|
| 85 | ** 6 Three different element-format options are available:
|
|---|
| 86 | **
|
|---|
| 87 | ** Option jform=1, suitable for the major planets:
|
|---|
| 88 | **
|
|---|
| 89 | ** epoch = epoch of elements (TT MJD)
|
|---|
| 90 | ** orbinc = inclination i (radians)
|
|---|
| 91 | ** anode = longitude of the ascending node, big omega (radians)
|
|---|
| 92 | ** perih = longitude of perihelion, curly pi (radians)
|
|---|
| 93 | ** aorq = mean distance, a (AU)
|
|---|
| 94 | ** e = eccentricity, e (range 0 to <1)
|
|---|
| 95 | ** aorl = mean longitude L (radians)
|
|---|
| 96 | ** dm = daily motion (radians)
|
|---|
| 97 | **
|
|---|
| 98 | ** Option jform=2, suitable for minor planets:
|
|---|
| 99 | **
|
|---|
| 100 | ** epoch = epoch of elements (TT MJD)
|
|---|
| 101 | ** orbinc = inclination i (radians)
|
|---|
| 102 | ** anode = longitude of the ascending node, big omega (radians)
|
|---|
| 103 | ** perih = argument of perihelion, little omega (radians)
|
|---|
| 104 | ** aorq = mean distance, a (AU)
|
|---|
| 105 | ** e = eccentricity, e (range 0 to <1)
|
|---|
| 106 | ** aorl = mean anomaly M (radians)
|
|---|
| 107 | **
|
|---|
| 108 | ** Option jform=3, suitable for comets:
|
|---|
| 109 | **
|
|---|
| 110 | ** epoch = epoch of perihelion (TT MJD)
|
|---|
| 111 | ** orbinc = inclination i (radians)
|
|---|
| 112 | ** anode = longitude of the ascending node, big omega (radians)
|
|---|
| 113 | ** perih = argument of perihelion, little omega (radians)
|
|---|
| 114 | ** aorq = perihelion distance, q (AU)
|
|---|
| 115 | ** e = eccentricity, e (range 0 to 10)
|
|---|
| 116 | **
|
|---|
| 117 | ** 7 Unused elements (dm for jform=2, aorl and dm for jform=3) are
|
|---|
| 118 | ** not accessed.
|
|---|
| 119 | **
|
|---|
| 120 | ** 8 The algorithm was originally adapted from the EPHSLA program of
|
|---|
| 121 | ** D.H.P.Jones (private communication, 1996). The method is based on
|
|---|
| 122 | ** Stumpff's Universal Variables.
|
|---|
| 123 | **
|
|---|
| 124 | ** Reference: Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983.
|
|---|
| 125 | **
|
|---|
| 126 | ** Last revision: 18 March 1999
|
|---|
| 127 | **
|
|---|
| 128 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 129 | */
|
|---|
| 130 |
|
|---|
| 131 | /* Gaussian gravitational constant (exact) */
|
|---|
| 132 | #define GCON 0.01720209895
|
|---|
| 133 |
|
|---|
| 134 | /* Sin and cos of J2000 mean obliquity (IAU 1976) */
|
|---|
| 135 | #define SE 0.3977771559319137
|
|---|
| 136 | #define CE 0.9174820620691818
|
|---|
| 137 |
|
|---|
| 138 | {
|
|---|
| 139 | int j;
|
|---|
| 140 | double pht, argph, q, w, cm, alpha, phs, sw, cw, si, ci, so, co,
|
|---|
| 141 | x, y, z, px, py, pz, vx, vy, vz, dt, fc, fp, psi, ul[13], pv[6];
|
|---|
| 142 |
|
|---|
| 143 |
|
|---|
| 144 |
|
|---|
| 145 | /* Validate arguments. */
|
|---|
| 146 | if ( jform < 1 || jform > 3 ) {
|
|---|
| 147 | *jstat = -1;
|
|---|
| 148 | return;
|
|---|
| 149 | }
|
|---|
| 150 | if ( e < 0.0 || e > 10.0 || ( e >= 1.0 && jform != 3 ) ) {
|
|---|
| 151 | *jstat = -2;
|
|---|
| 152 | return;
|
|---|
| 153 | }
|
|---|
| 154 | if ( aorq <= 0.0 ) {
|
|---|
| 155 | *jstat = -3;
|
|---|
| 156 | return;
|
|---|
| 157 | }
|
|---|
| 158 | if ( jform == 1 && dm <= 0.0 ) {
|
|---|
| 159 | *jstat = -4;
|
|---|
| 160 | return;
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|
| 163 | /*
|
|---|
| 164 | ** Transform elements into standard form:
|
|---|
| 165 | **
|
|---|
| 166 | ** pht = epoch of perihelion passage
|
|---|
| 167 | ** argph = argument of perihelion (little omega)
|
|---|
| 168 | ** q = perihelion distance (q)
|
|---|
| 169 | ** cm = combined mass, M+m (mu)
|
|---|
| 170 | */
|
|---|
| 171 |
|
|---|
| 172 | if ( jform == 1 ) {
|
|---|
| 173 | pht = epoch - ( aorl - perih ) / dm;
|
|---|
| 174 | argph = perih - anode;
|
|---|
| 175 | q = aorq * ( 1.0 - e );
|
|---|
| 176 | w = dm / GCON;
|
|---|
| 177 | cm = w * w * aorq * aorq * aorq;
|
|---|
| 178 | } else if ( jform == 2 ) {
|
|---|
| 179 | pht = epoch - aorl * sqrt ( aorq * aorq * aorq ) / GCON;
|
|---|
| 180 | argph = perih;
|
|---|
| 181 | q = aorq * ( 1.0 - e );
|
|---|
| 182 | cm = 1.0;
|
|---|
| 183 | } else if ( jform == 3 ) {
|
|---|
| 184 | pht = epoch;
|
|---|
| 185 | argph = perih;
|
|---|
| 186 | q = aorq;
|
|---|
| 187 | cm = 1.0;
|
|---|
| 188 | }
|
|---|
| 189 |
|
|---|
| 190 | /*
|
|---|
| 191 | ** The universal variable alpha. This is proportional to the total
|
|---|
| 192 | ** energy of the orbit: -ve for an ellipse, zero for a parabola,
|
|---|
| 193 | ** +ve for a hyperbola.
|
|---|
| 194 | */
|
|---|
| 195 |
|
|---|
| 196 | alpha = cm * ( e - 1.0 ) / q;
|
|---|
| 197 |
|
|---|
| 198 | /* Speed at perihelion. */
|
|---|
| 199 |
|
|---|
| 200 | phs = sqrt ( alpha + 2.0 * cm / q );
|
|---|
| 201 |
|
|---|
| 202 | /*
|
|---|
| 203 | ** In a Cartesian coordinate system which has the x-axis pointing
|
|---|
| 204 | ** to perihelion and the z-axis normal to the orbit (such that the
|
|---|
| 205 | ** object orbits counter-clockwise as seen from +ve z), the
|
|---|
| 206 | ** perihelion position and velocity vectors are:
|
|---|
| 207 | **
|
|---|
| 208 | ** position [Q,0,0]
|
|---|
| 209 | ** velocity [0,phs,0]
|
|---|
| 210 | **
|
|---|
| 211 | ** To express the results in J2000 equatorial coordinates we make a
|
|---|
| 212 | ** series of four rotations of the Cartesian axes:
|
|---|
| 213 | **
|
|---|
| 214 | ** axis Euler angle
|
|---|
| 215 | **
|
|---|
| 216 | ** 1 z argument of perihelion (little omega)
|
|---|
| 217 | ** 2 x inclination (i)
|
|---|
| 218 | ** 3 z longitude of the ascending node (big omega)
|
|---|
| 219 | ** 4 x J2000 obliquity (epsilon)
|
|---|
| 220 | **
|
|---|
| 221 | ** In each case the rotation is clockwise as seen from the +ve end
|
|---|
| 222 | ** of the axis concerned.
|
|---|
| 223 | */
|
|---|
| 224 |
|
|---|
| 225 | /* Functions of the Euler angles. */
|
|---|
| 226 | sw = sin ( argph );
|
|---|
| 227 | cw = cos ( argph );
|
|---|
| 228 | si = sin ( orbinc );
|
|---|
| 229 | ci = cos ( orbinc );
|
|---|
| 230 | so = sin ( anode );
|
|---|
| 231 | co = cos ( anode );
|
|---|
| 232 |
|
|---|
| 233 | /* Position at perihelion (AU). */
|
|---|
| 234 | x = q * cw;
|
|---|
| 235 | y = q * sw;
|
|---|
| 236 | z = y * si;
|
|---|
| 237 | y = y * ci;
|
|---|
| 238 | px = x * co - y * so;
|
|---|
| 239 | y = x * so + y * co;
|
|---|
| 240 | py = y * CE - z * SE;
|
|---|
| 241 | pz = y * SE + z * CE;
|
|---|
| 242 |
|
|---|
| 243 | /* Velocity at perihelion (AU per canonical day). */
|
|---|
| 244 | x = - phs * sw;
|
|---|
| 245 | y = phs * cw;
|
|---|
| 246 | z = y * si;
|
|---|
| 247 | y = y * ci;
|
|---|
| 248 | vx = x * co - y * so;
|
|---|
| 249 | y = x * so + y * co;
|
|---|
| 250 | vy = y * CE - z * SE;
|
|---|
| 251 | vz = y * SE + z * CE;
|
|---|
| 252 |
|
|---|
| 253 | /* Time from perihelion to date (in Canonical Days: a canonical */
|
|---|
| 254 | /* day is 58.1324409... days, defined as 1/GCON). */
|
|---|
| 255 |
|
|---|
| 256 | dt = ( date - pht ) * GCON;
|
|---|
| 257 |
|
|---|
| 258 | /* First Approximation to the Universal Eccentric Anomaly, psi, */
|
|---|
| 259 | /* based on the circle (fc) and parabola (fp) values. */
|
|---|
| 260 | fc = dt / q;
|
|---|
| 261 | w = pow ( 3.0 * dt + sqrt ( 9.0 * dt * dt + 8.0 * q * q * q ),
|
|---|
| 262 | 1.0 / 3.0 );
|
|---|
| 263 | fp = w - 2.0 * q / w;
|
|---|
| 264 | psi = ( 1.0 - e ) * fc + e * fp;
|
|---|
| 265 |
|
|---|
| 266 | /* Assemble local copy of element set. */
|
|---|
| 267 | ul[0] = cm;
|
|---|
| 268 | ul[1] = alpha;
|
|---|
| 269 | ul[2] = pht;
|
|---|
| 270 | ul[3] = px;
|
|---|
| 271 | ul[4] = py;
|
|---|
| 272 | ul[5] = pz;
|
|---|
| 273 | ul[6] = vx;
|
|---|
| 274 | ul[7] = vy;
|
|---|
| 275 | ul[8] = vz;
|
|---|
| 276 | ul[9] = q;
|
|---|
| 277 | ul[10] = 0.0;
|
|---|
| 278 | ul[11] = date;
|
|---|
| 279 | ul[12] = psi;
|
|---|
| 280 |
|
|---|
| 281 | /* Predict position+velocity at epoch of osculation. */
|
|---|
| 282 | slaUe2pv ( date, ul, pv, &j );
|
|---|
| 283 | if ( j ) {
|
|---|
| 284 | *jstat = -5;
|
|---|
| 285 | return;
|
|---|
| 286 | }
|
|---|
| 287 |
|
|---|
| 288 | /* Convert back to universal elements. */
|
|---|
| 289 | slaPv2ue ( pv, date, cm - 1.0, u, &j );
|
|---|
| 290 | if ( j ) {
|
|---|
| 291 | *jstat = -5;
|
|---|
| 292 | return;
|
|---|
| 293 | }
|
|---|
| 294 |
|
|---|
| 295 | /* OK exit. */
|
|---|
| 296 | *jstat = 0;
|
|---|
| 297 |
|
|---|
| 298 | }
|
|---|