1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaEl2ue ( double date, int jform, double epoch, double orbinc,
|
---|
4 | double anode, double perih, double aorq, double e,
|
---|
5 | double aorl, double dm, double u[], int *jstat )
|
---|
6 | /*
|
---|
7 | ** - - - - - - - - -
|
---|
8 | ** s l a E l 2 u e
|
---|
9 | ** - - - - - - - - -
|
---|
10 | **
|
---|
11 | ** Transform conventional osculating orbital elements into "universal" form.
|
---|
12 | **
|
---|
13 | ** Given:
|
---|
14 | ** date double epoch (TT MJD) of osculation (Note 3)
|
---|
15 | ** jform int choice of element set (1-3, Note 6)
|
---|
16 | ** epoch double epoch (TT MJD) of the elements
|
---|
17 | ** orbinc double inclination (radians)
|
---|
18 | ** anode double longitude of the ascending node (radians)
|
---|
19 | ** perih double longitude or argument of perihelion (radians)
|
---|
20 | ** aorq double mean distance or perihelion distance (AU)
|
---|
21 | ** e double eccentricity
|
---|
22 | ** aorl double mean anomaly or longitude (radians, jform=1,2 only)
|
---|
23 | ** dm double daily motion (radians, jform=1 only)
|
---|
24 | **
|
---|
25 | ** Returned:
|
---|
26 | ** u double[13] universal orbital elements (Note 1)
|
---|
27 | **
|
---|
28 | ** [0] combined mass (M+m)
|
---|
29 | ** [1] total energy of the orbit (alpha)
|
---|
30 | ** [2] reference (osculating) epoch (t0)
|
---|
31 | ** [3-5] position at reference epoch (r0)
|
---|
32 | ** [6-8] velocity at reference epoch (v0)
|
---|
33 | ** [9] heliocentric distance at reference epoch
|
---|
34 | ** [10] r0.v0
|
---|
35 | ** [11] date (t)
|
---|
36 | ** [12] universal eccentric anomaly (psi) of date, approx
|
---|
37 | **
|
---|
38 | ** jstat int* status: 0 = OK
|
---|
39 | ** -1 = illegal jform
|
---|
40 | ** -2 = illegal e
|
---|
41 | ** -3 = illegal aorq
|
---|
42 | ** -4 = illegal dm
|
---|
43 | ** -5 = numerical error
|
---|
44 | **
|
---|
45 | ** Called: slaUe2pv, slaPv2ue
|
---|
46 | **
|
---|
47 | ** Notes
|
---|
48 | **
|
---|
49 | ** 1 The "universal" elements are those which define the orbit for the
|
---|
50 | ** purposes of the method of universal variables (see reference).
|
---|
51 | ** They consist of the combined mass of the two bodies, an epoch,
|
---|
52 | ** and the position and velocity vectors (arbitrary reference frame)
|
---|
53 | ** at that epoch. The parameter set used here includes also various
|
---|
54 | ** quantities that can, in fact, be derived from the other
|
---|
55 | ** information. This approach is taken to avoiding unnecessary
|
---|
56 | ** computation and loss of accuracy. The supplementary quantities
|
---|
57 | ** are (i) alpha, which is proportional to the total energy of the
|
---|
58 | ** orbit, (ii) the heliocentric distance at epoch, (iii) the
|
---|
59 | ** outwards component of the velocity at the given epoch, (iv) an
|
---|
60 | ** estimate of psi, the "universal eccentric anomaly" at a given
|
---|
61 | ** date and (v) that date.
|
---|
62 | **
|
---|
63 | ** 2 The companion routine is slaUe2pv. This takes the set of numbers
|
---|
64 | ** that the present routine outputs and uses them to derive the
|
---|
65 | ** object's position and velocity. A single prediction requires one
|
---|
66 | ** call to the present routine followed by one call to slaUe2pv;
|
---|
67 | ** for convenience, the two calls are packaged as the routine
|
---|
68 | ** slaPlanel. Multiple predictions may be made by again calling the
|
---|
69 | ** present routine once, but then calling slaUe2pv multiple times,
|
---|
70 | ** which is faster than multiple calls to slaPlanel.
|
---|
71 | **
|
---|
72 | ** 3 date is the epoch of osculation. It is in the TT timescale
|
---|
73 | ** (formerly Ephemeris Time, ET) and is a Modified Julian Date
|
---|
74 | ** (JD-2400000.5).
|
---|
75 | **
|
---|
76 | ** 4 The supplied orbital elements are with respect to the J2000
|
---|
77 | ** ecliptic and equinox. The position and velocity parameters
|
---|
78 | ** returned in the array u are with respect to the mean equator and
|
---|
79 | ** equinox of epoch J2000, and are for the perihelion prior to the
|
---|
80 | ** specified epoch.
|
---|
81 | **
|
---|
82 | ** 5 The universal elements returned in the array u are in canonical
|
---|
83 | ** units (solar masses, AU and canonical days).
|
---|
84 | **
|
---|
85 | ** 6 Three different element-format options are available:
|
---|
86 | **
|
---|
87 | ** Option jform=1, suitable for the major planets:
|
---|
88 | **
|
---|
89 | ** epoch = epoch of elements (TT MJD)
|
---|
90 | ** orbinc = inclination i (radians)
|
---|
91 | ** anode = longitude of the ascending node, big omega (radians)
|
---|
92 | ** perih = longitude of perihelion, curly pi (radians)
|
---|
93 | ** aorq = mean distance, a (AU)
|
---|
94 | ** e = eccentricity, e (range 0 to <1)
|
---|
95 | ** aorl = mean longitude L (radians)
|
---|
96 | ** dm = daily motion (radians)
|
---|
97 | **
|
---|
98 | ** Option jform=2, suitable for minor planets:
|
---|
99 | **
|
---|
100 | ** epoch = epoch of elements (TT MJD)
|
---|
101 | ** orbinc = inclination i (radians)
|
---|
102 | ** anode = longitude of the ascending node, big omega (radians)
|
---|
103 | ** perih = argument of perihelion, little omega (radians)
|
---|
104 | ** aorq = mean distance, a (AU)
|
---|
105 | ** e = eccentricity, e (range 0 to <1)
|
---|
106 | ** aorl = mean anomaly M (radians)
|
---|
107 | **
|
---|
108 | ** Option jform=3, suitable for comets:
|
---|
109 | **
|
---|
110 | ** epoch = epoch of perihelion (TT MJD)
|
---|
111 | ** orbinc = inclination i (radians)
|
---|
112 | ** anode = longitude of the ascending node, big omega (radians)
|
---|
113 | ** perih = argument of perihelion, little omega (radians)
|
---|
114 | ** aorq = perihelion distance, q (AU)
|
---|
115 | ** e = eccentricity, e (range 0 to 10)
|
---|
116 | **
|
---|
117 | ** 7 Unused elements (dm for jform=2, aorl and dm for jform=3) are
|
---|
118 | ** not accessed.
|
---|
119 | **
|
---|
120 | ** 8 The algorithm was originally adapted from the EPHSLA program of
|
---|
121 | ** D.H.P.Jones (private communication, 1996). The method is based on
|
---|
122 | ** Stumpff's Universal Variables.
|
---|
123 | **
|
---|
124 | ** Reference: Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983.
|
---|
125 | **
|
---|
126 | ** Last revision: 18 March 1999
|
---|
127 | **
|
---|
128 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
129 | */
|
---|
130 |
|
---|
131 | /* Gaussian gravitational constant (exact) */
|
---|
132 | #define GCON 0.01720209895
|
---|
133 |
|
---|
134 | /* Sin and cos of J2000 mean obliquity (IAU 1976) */
|
---|
135 | #define SE 0.3977771559319137
|
---|
136 | #define CE 0.9174820620691818
|
---|
137 |
|
---|
138 | {
|
---|
139 | int j;
|
---|
140 | double pht, argph, q, w, cm, alpha, phs, sw, cw, si, ci, so, co,
|
---|
141 | x, y, z, px, py, pz, vx, vy, vz, dt, fc, fp, psi, ul[13], pv[6];
|
---|
142 |
|
---|
143 |
|
---|
144 |
|
---|
145 | /* Validate arguments. */
|
---|
146 | if ( jform < 1 || jform > 3 ) {
|
---|
147 | *jstat = -1;
|
---|
148 | return;
|
---|
149 | }
|
---|
150 | if ( e < 0.0 || e > 10.0 || ( e >= 1.0 && jform != 3 ) ) {
|
---|
151 | *jstat = -2;
|
---|
152 | return;
|
---|
153 | }
|
---|
154 | if ( aorq <= 0.0 ) {
|
---|
155 | *jstat = -3;
|
---|
156 | return;
|
---|
157 | }
|
---|
158 | if ( jform == 1 && dm <= 0.0 ) {
|
---|
159 | *jstat = -4;
|
---|
160 | return;
|
---|
161 | }
|
---|
162 |
|
---|
163 | /*
|
---|
164 | ** Transform elements into standard form:
|
---|
165 | **
|
---|
166 | ** pht = epoch of perihelion passage
|
---|
167 | ** argph = argument of perihelion (little omega)
|
---|
168 | ** q = perihelion distance (q)
|
---|
169 | ** cm = combined mass, M+m (mu)
|
---|
170 | */
|
---|
171 |
|
---|
172 | if ( jform == 1 ) {
|
---|
173 | pht = epoch - ( aorl - perih ) / dm;
|
---|
174 | argph = perih - anode;
|
---|
175 | q = aorq * ( 1.0 - e );
|
---|
176 | w = dm / GCON;
|
---|
177 | cm = w * w * aorq * aorq * aorq;
|
---|
178 | } else if ( jform == 2 ) {
|
---|
179 | pht = epoch - aorl * sqrt ( aorq * aorq * aorq ) / GCON;
|
---|
180 | argph = perih;
|
---|
181 | q = aorq * ( 1.0 - e );
|
---|
182 | cm = 1.0;
|
---|
183 | } else if ( jform == 3 ) {
|
---|
184 | pht = epoch;
|
---|
185 | argph = perih;
|
---|
186 | q = aorq;
|
---|
187 | cm = 1.0;
|
---|
188 | }
|
---|
189 |
|
---|
190 | /*
|
---|
191 | ** The universal variable alpha. This is proportional to the total
|
---|
192 | ** energy of the orbit: -ve for an ellipse, zero for a parabola,
|
---|
193 | ** +ve for a hyperbola.
|
---|
194 | */
|
---|
195 |
|
---|
196 | alpha = cm * ( e - 1.0 ) / q;
|
---|
197 |
|
---|
198 | /* Speed at perihelion. */
|
---|
199 |
|
---|
200 | phs = sqrt ( alpha + 2.0 * cm / q );
|
---|
201 |
|
---|
202 | /*
|
---|
203 | ** In a Cartesian coordinate system which has the x-axis pointing
|
---|
204 | ** to perihelion and the z-axis normal to the orbit (such that the
|
---|
205 | ** object orbits counter-clockwise as seen from +ve z), the
|
---|
206 | ** perihelion position and velocity vectors are:
|
---|
207 | **
|
---|
208 | ** position [Q,0,0]
|
---|
209 | ** velocity [0,phs,0]
|
---|
210 | **
|
---|
211 | ** To express the results in J2000 equatorial coordinates we make a
|
---|
212 | ** series of four rotations of the Cartesian axes:
|
---|
213 | **
|
---|
214 | ** axis Euler angle
|
---|
215 | **
|
---|
216 | ** 1 z argument of perihelion (little omega)
|
---|
217 | ** 2 x inclination (i)
|
---|
218 | ** 3 z longitude of the ascending node (big omega)
|
---|
219 | ** 4 x J2000 obliquity (epsilon)
|
---|
220 | **
|
---|
221 | ** In each case the rotation is clockwise as seen from the +ve end
|
---|
222 | ** of the axis concerned.
|
---|
223 | */
|
---|
224 |
|
---|
225 | /* Functions of the Euler angles. */
|
---|
226 | sw = sin ( argph );
|
---|
227 | cw = cos ( argph );
|
---|
228 | si = sin ( orbinc );
|
---|
229 | ci = cos ( orbinc );
|
---|
230 | so = sin ( anode );
|
---|
231 | co = cos ( anode );
|
---|
232 |
|
---|
233 | /* Position at perihelion (AU). */
|
---|
234 | x = q * cw;
|
---|
235 | y = q * sw;
|
---|
236 | z = y * si;
|
---|
237 | y = y * ci;
|
---|
238 | px = x * co - y * so;
|
---|
239 | y = x * so + y * co;
|
---|
240 | py = y * CE - z * SE;
|
---|
241 | pz = y * SE + z * CE;
|
---|
242 |
|
---|
243 | /* Velocity at perihelion (AU per canonical day). */
|
---|
244 | x = - phs * sw;
|
---|
245 | y = phs * cw;
|
---|
246 | z = y * si;
|
---|
247 | y = y * ci;
|
---|
248 | vx = x * co - y * so;
|
---|
249 | y = x * so + y * co;
|
---|
250 | vy = y * CE - z * SE;
|
---|
251 | vz = y * SE + z * CE;
|
---|
252 |
|
---|
253 | /* Time from perihelion to date (in Canonical Days: a canonical */
|
---|
254 | /* day is 58.1324409... days, defined as 1/GCON). */
|
---|
255 |
|
---|
256 | dt = ( date - pht ) * GCON;
|
---|
257 |
|
---|
258 | /* First Approximation to the Universal Eccentric Anomaly, psi, */
|
---|
259 | /* based on the circle (fc) and parabola (fp) values. */
|
---|
260 | fc = dt / q;
|
---|
261 | w = pow ( 3.0 * dt + sqrt ( 9.0 * dt * dt + 8.0 * q * q * q ),
|
---|
262 | 1.0 / 3.0 );
|
---|
263 | fp = w - 2.0 * q / w;
|
---|
264 | psi = ( 1.0 - e ) * fc + e * fp;
|
---|
265 |
|
---|
266 | /* Assemble local copy of element set. */
|
---|
267 | ul[0] = cm;
|
---|
268 | ul[1] = alpha;
|
---|
269 | ul[2] = pht;
|
---|
270 | ul[3] = px;
|
---|
271 | ul[4] = py;
|
---|
272 | ul[5] = pz;
|
---|
273 | ul[6] = vx;
|
---|
274 | ul[7] = vy;
|
---|
275 | ul[8] = vz;
|
---|
276 | ul[9] = q;
|
---|
277 | ul[10] = 0.0;
|
---|
278 | ul[11] = date;
|
---|
279 | ul[12] = psi;
|
---|
280 |
|
---|
281 | /* Predict position+velocity at epoch of osculation. */
|
---|
282 | slaUe2pv ( date, ul, pv, &j );
|
---|
283 | if ( j ) {
|
---|
284 | *jstat = -5;
|
---|
285 | return;
|
---|
286 | }
|
---|
287 |
|
---|
288 | /* Convert back to universal elements. */
|
---|
289 | slaPv2ue ( pv, date, cm - 1.0, u, &j );
|
---|
290 | if ( j ) {
|
---|
291 | *jstat = -5;
|
---|
292 | return;
|
---|
293 | }
|
---|
294 |
|
---|
295 | /* OK exit. */
|
---|
296 | *jstat = 0;
|
---|
297 |
|
---|
298 | }
|
---|