| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaEl2ue ( double date, int jform, double epoch, double orbinc, | 
|---|
| 4 | double anode, double perih, double aorq, double e, | 
|---|
| 5 | double aorl, double dm, double u[], int *jstat ) | 
|---|
| 6 | /* | 
|---|
| 7 | **  - - - - - - - - - | 
|---|
| 8 | **   s l a E l 2 u e | 
|---|
| 9 | **  - - - - - - - - - | 
|---|
| 10 | ** | 
|---|
| 11 | **  Transform conventional osculating orbital elements into "universal" form. | 
|---|
| 12 | ** | 
|---|
| 13 | **  Given: | 
|---|
| 14 | **     date    double     epoch (TT MJD) of osculation (Note 3) | 
|---|
| 15 | **     jform   int        choice of element set (1-3, Note 6) | 
|---|
| 16 | **     epoch   double     epoch (TT MJD) of the elements | 
|---|
| 17 | **     orbinc  double     inclination (radians) | 
|---|
| 18 | **     anode   double     longitude of the ascending node (radians) | 
|---|
| 19 | **     perih   double     longitude or argument of perihelion (radians) | 
|---|
| 20 | **     aorq    double     mean distance or perihelion distance (AU) | 
|---|
| 21 | **     e       double     eccentricity | 
|---|
| 22 | **     aorl    double     mean anomaly or longitude (radians, jform=1,2 only) | 
|---|
| 23 | **     dm      double     daily motion (radians, jform=1 only) | 
|---|
| 24 | ** | 
|---|
| 25 | **  Returned: | 
|---|
| 26 | **     u       double[13] universal orbital elements (Note 1) | 
|---|
| 27 | ** | 
|---|
| 28 | **                    [0] combined mass (M+m) | 
|---|
| 29 | **                    [1] total energy of the orbit (alpha) | 
|---|
| 30 | **                    [2] reference (osculating) epoch (t0) | 
|---|
| 31 | **                  [3-5] position at reference epoch (r0) | 
|---|
| 32 | **                  [6-8] velocity at reference epoch (v0) | 
|---|
| 33 | **                    [9] heliocentric distance at reference epoch | 
|---|
| 34 | **                   [10] r0.v0 | 
|---|
| 35 | **                   [11] date (t) | 
|---|
| 36 | **                   [12] universal eccentric anomaly (psi) of date, approx | 
|---|
| 37 | ** | 
|---|
| 38 | **     jstat   int*       status:  0 = OK | 
|---|
| 39 | **                                -1 = illegal jform | 
|---|
| 40 | **                                -2 = illegal e | 
|---|
| 41 | **                                -3 = illegal aorq | 
|---|
| 42 | **                                -4 = illegal dm | 
|---|
| 43 | **                                -5 = numerical error | 
|---|
| 44 | ** | 
|---|
| 45 | **  Called:  slaUe2pv, slaPv2ue | 
|---|
| 46 | ** | 
|---|
| 47 | **  Notes | 
|---|
| 48 | ** | 
|---|
| 49 | **  1  The "universal" elements are those which define the orbit for the | 
|---|
| 50 | **     purposes of the method of universal variables (see reference). | 
|---|
| 51 | **     They consist of the combined mass of the two bodies, an epoch, | 
|---|
| 52 | **     and the position and velocity vectors (arbitrary reference frame) | 
|---|
| 53 | **     at that epoch.  The parameter set used here includes also various | 
|---|
| 54 | **     quantities that can, in fact, be derived from the other | 
|---|
| 55 | **     information.  This approach is taken to avoiding unnecessary | 
|---|
| 56 | **     computation and loss of accuracy.  The supplementary quantities | 
|---|
| 57 | **     are (i) alpha, which is proportional to the total energy of the | 
|---|
| 58 | **     orbit, (ii) the heliocentric distance at epoch, (iii) the | 
|---|
| 59 | **     outwards component of the velocity at the given epoch, (iv) an | 
|---|
| 60 | **     estimate of psi, the "universal eccentric anomaly" at a given | 
|---|
| 61 | **     date and (v) that date. | 
|---|
| 62 | ** | 
|---|
| 63 | **  2  The companion routine is slaUe2pv.  This takes the set of numbers | 
|---|
| 64 | **     that the present routine outputs and uses them to derive the | 
|---|
| 65 | **     object's position and velocity.  A single prediction requires one | 
|---|
| 66 | **     call to the present routine followed by one call to slaUe2pv; | 
|---|
| 67 | **     for convenience, the two calls are packaged as the routine | 
|---|
| 68 | **     slaPlanel.  Multiple predictions may be made by again calling the | 
|---|
| 69 | **     present routine once, but then calling slaUe2pv multiple times, | 
|---|
| 70 | **     which is faster than multiple calls to slaPlanel. | 
|---|
| 71 | ** | 
|---|
| 72 | **  3  date is the epoch of osculation.  It is in the TT timescale | 
|---|
| 73 | **     (formerly Ephemeris Time, ET) and is a Modified Julian Date | 
|---|
| 74 | **     (JD-2400000.5). | 
|---|
| 75 | ** | 
|---|
| 76 | **  4  The supplied orbital elements are with respect to the J2000 | 
|---|
| 77 | **     ecliptic and equinox.  The position and velocity parameters | 
|---|
| 78 | **     returned in the array u are with respect to the mean equator and | 
|---|
| 79 | **     equinox of epoch J2000, and are for the perihelion prior to the | 
|---|
| 80 | **     specified epoch. | 
|---|
| 81 | ** | 
|---|
| 82 | **  5  The universal elements returned in the array u are in canonical | 
|---|
| 83 | **     units (solar masses, AU and canonical days). | 
|---|
| 84 | ** | 
|---|
| 85 | **  6  Three different element-format options are available: | 
|---|
| 86 | ** | 
|---|
| 87 | **     Option jform=1, suitable for the major planets: | 
|---|
| 88 | ** | 
|---|
| 89 | **     epoch  = epoch of elements (TT MJD) | 
|---|
| 90 | **     orbinc = inclination i (radians) | 
|---|
| 91 | **     anode  = longitude of the ascending node, big omega (radians) | 
|---|
| 92 | **     perih  = longitude of perihelion, curly pi (radians) | 
|---|
| 93 | **     aorq   = mean distance, a (AU) | 
|---|
| 94 | **     e      = eccentricity, e (range 0 to <1) | 
|---|
| 95 | **     aorl   = mean longitude L (radians) | 
|---|
| 96 | **     dm     = daily motion (radians) | 
|---|
| 97 | ** | 
|---|
| 98 | **     Option jform=2, suitable for minor planets: | 
|---|
| 99 | ** | 
|---|
| 100 | **     epoch  = epoch of elements (TT MJD) | 
|---|
| 101 | **     orbinc = inclination i (radians) | 
|---|
| 102 | **     anode  = longitude of the ascending node, big omega (radians) | 
|---|
| 103 | **     perih  = argument of perihelion, little omega (radians) | 
|---|
| 104 | **     aorq   = mean distance, a (AU) | 
|---|
| 105 | **     e      = eccentricity, e (range 0 to <1) | 
|---|
| 106 | **     aorl   = mean anomaly M (radians) | 
|---|
| 107 | ** | 
|---|
| 108 | **     Option jform=3, suitable for comets: | 
|---|
| 109 | ** | 
|---|
| 110 | **     epoch  = epoch of perihelion (TT MJD) | 
|---|
| 111 | **     orbinc = inclination i (radians) | 
|---|
| 112 | **     anode  = longitude of the ascending node, big omega (radians) | 
|---|
| 113 | **     perih  = argument of perihelion, little omega (radians) | 
|---|
| 114 | **     aorq   = perihelion distance, q (AU) | 
|---|
| 115 | **     e      = eccentricity, e (range 0 to 10) | 
|---|
| 116 | ** | 
|---|
| 117 | **  7  Unused elements (dm for jform=2, aorl and dm for jform=3) are | 
|---|
| 118 | **     not accessed. | 
|---|
| 119 | ** | 
|---|
| 120 | **  8  The algorithm was originally adapted from the EPHSLA program of | 
|---|
| 121 | **     D.H.P.Jones (private communication, 1996).  The method is based on | 
|---|
| 122 | **     Stumpff's Universal Variables. | 
|---|
| 123 | ** | 
|---|
| 124 | **  Reference:  Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983. | 
|---|
| 125 | ** | 
|---|
| 126 | **  Last revision:   18 March 1999 | 
|---|
| 127 | ** | 
|---|
| 128 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 129 | */ | 
|---|
| 130 |  | 
|---|
| 131 | /* Gaussian gravitational constant (exact) */ | 
|---|
| 132 | #define GCON 0.01720209895 | 
|---|
| 133 |  | 
|---|
| 134 | /* Sin and cos of J2000 mean obliquity (IAU 1976) */ | 
|---|
| 135 | #define SE 0.3977771559319137 | 
|---|
| 136 | #define CE 0.9174820620691818 | 
|---|
| 137 |  | 
|---|
| 138 | { | 
|---|
| 139 | int j; | 
|---|
| 140 | double pht, argph, q, w, cm, alpha, phs, sw, cw, si, ci, so, co, | 
|---|
| 141 | x, y, z, px, py, pz, vx, vy, vz, dt, fc, fp, psi, ul[13], pv[6]; | 
|---|
| 142 |  | 
|---|
| 143 |  | 
|---|
| 144 |  | 
|---|
| 145 | /* Validate arguments. */ | 
|---|
| 146 | if ( jform < 1 || jform > 3 ) { | 
|---|
| 147 | *jstat = -1; | 
|---|
| 148 | return; | 
|---|
| 149 | } | 
|---|
| 150 | if ( e < 0.0 || e > 10.0 || ( e >= 1.0 && jform != 3 ) ) { | 
|---|
| 151 | *jstat = -2; | 
|---|
| 152 | return; | 
|---|
| 153 | } | 
|---|
| 154 | if ( aorq <= 0.0 ) { | 
|---|
| 155 | *jstat = -3; | 
|---|
| 156 | return; | 
|---|
| 157 | } | 
|---|
| 158 | if ( jform == 1 && dm <= 0.0 ) { | 
|---|
| 159 | *jstat = -4; | 
|---|
| 160 | return; | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | /* | 
|---|
| 164 | ** Transform elements into standard form: | 
|---|
| 165 | ** | 
|---|
| 166 | ** pht   = epoch of perihelion passage | 
|---|
| 167 | ** argph = argument of perihelion (little omega) | 
|---|
| 168 | ** q     = perihelion distance (q) | 
|---|
| 169 | ** cm    = combined mass, M+m (mu) | 
|---|
| 170 | */ | 
|---|
| 171 |  | 
|---|
| 172 | if ( jform == 1 ) { | 
|---|
| 173 | pht = epoch - ( aorl - perih ) / dm; | 
|---|
| 174 | argph = perih - anode; | 
|---|
| 175 | q = aorq * ( 1.0 - e ); | 
|---|
| 176 | w = dm / GCON; | 
|---|
| 177 | cm =  w * w * aorq * aorq * aorq; | 
|---|
| 178 | } else if ( jform == 2 ) { | 
|---|
| 179 | pht = epoch - aorl * sqrt ( aorq * aorq * aorq ) / GCON; | 
|---|
| 180 | argph = perih; | 
|---|
| 181 | q = aorq * ( 1.0 - e ); | 
|---|
| 182 | cm = 1.0; | 
|---|
| 183 | } else if ( jform == 3 ) { | 
|---|
| 184 | pht = epoch; | 
|---|
| 185 | argph = perih; | 
|---|
| 186 | q = aorq; | 
|---|
| 187 | cm = 1.0; | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | /* | 
|---|
| 191 | ** The universal variable alpha.  This is proportional to the total | 
|---|
| 192 | ** energy of the orbit:  -ve for an ellipse, zero for a parabola, | 
|---|
| 193 | ** +ve for a hyperbola. | 
|---|
| 194 | */ | 
|---|
| 195 |  | 
|---|
| 196 | alpha = cm * ( e - 1.0 ) / q; | 
|---|
| 197 |  | 
|---|
| 198 | /* Speed at perihelion. */ | 
|---|
| 199 |  | 
|---|
| 200 | phs = sqrt ( alpha + 2.0 * cm / q ); | 
|---|
| 201 |  | 
|---|
| 202 | /* | 
|---|
| 203 | ** In a Cartesian coordinate system which has the x-axis pointing | 
|---|
| 204 | ** to perihelion and the z-axis normal to the orbit (such that the | 
|---|
| 205 | ** object orbits counter-clockwise as seen from +ve z), the | 
|---|
| 206 | ** perihelion position and velocity vectors are: | 
|---|
| 207 | ** | 
|---|
| 208 | **   position   [Q,0,0] | 
|---|
| 209 | **   velocity   [0,phs,0] | 
|---|
| 210 | ** | 
|---|
| 211 | ** To express the results in J2000 equatorial coordinates we make a | 
|---|
| 212 | ** series of four rotations of the Cartesian axes: | 
|---|
| 213 | ** | 
|---|
| 214 | **           axis      Euler angle | 
|---|
| 215 | ** | 
|---|
| 216 | **     1      z        argument of perihelion (little omega) | 
|---|
| 217 | **     2      x        inclination (i) | 
|---|
| 218 | **     3      z        longitude of the ascending node (big omega) | 
|---|
| 219 | **     4      x        J2000 obliquity (epsilon) | 
|---|
| 220 | ** | 
|---|
| 221 | ** In each case the rotation is clockwise as seen from the +ve end | 
|---|
| 222 | ** of the axis concerned. | 
|---|
| 223 | */ | 
|---|
| 224 |  | 
|---|
| 225 | /* Functions of the Euler angles. */ | 
|---|
| 226 | sw = sin ( argph ); | 
|---|
| 227 | cw = cos ( argph ); | 
|---|
| 228 | si = sin ( orbinc ); | 
|---|
| 229 | ci = cos ( orbinc ); | 
|---|
| 230 | so = sin ( anode ); | 
|---|
| 231 | co = cos ( anode ); | 
|---|
| 232 |  | 
|---|
| 233 | /* Position at perihelion (AU). */ | 
|---|
| 234 | x = q * cw; | 
|---|
| 235 | y = q * sw; | 
|---|
| 236 | z = y * si; | 
|---|
| 237 | y = y * ci; | 
|---|
| 238 | px = x * co - y * so; | 
|---|
| 239 | y = x * so + y * co; | 
|---|
| 240 | py = y * CE - z * SE; | 
|---|
| 241 | pz = y * SE + z * CE; | 
|---|
| 242 |  | 
|---|
| 243 | /* Velocity at perihelion (AU per canonical day). */ | 
|---|
| 244 | x = - phs * sw; | 
|---|
| 245 | y = phs * cw; | 
|---|
| 246 | z = y * si; | 
|---|
| 247 | y = y * ci; | 
|---|
| 248 | vx = x * co - y * so; | 
|---|
| 249 | y = x * so + y * co; | 
|---|
| 250 | vy = y * CE - z * SE; | 
|---|
| 251 | vz = y * SE + z * CE; | 
|---|
| 252 |  | 
|---|
| 253 | /* Time from perihelion to date (in Canonical Days: a canonical */ | 
|---|
| 254 | /* day is 58.1324409... days, defined as 1/GCON).               */ | 
|---|
| 255 |  | 
|---|
| 256 | dt = ( date - pht ) * GCON; | 
|---|
| 257 |  | 
|---|
| 258 | /* First Approximation to the Universal Eccentric Anomaly, psi, */ | 
|---|
| 259 | /* based on the circle (fc) and parabola (fp) values.           */ | 
|---|
| 260 | fc = dt / q; | 
|---|
| 261 | w = pow ( 3.0 * dt + sqrt ( 9.0 * dt * dt + 8.0 * q * q * q ), | 
|---|
| 262 | 1.0 / 3.0 ); | 
|---|
| 263 | fp = w - 2.0 * q / w; | 
|---|
| 264 | psi = ( 1.0 - e ) * fc + e * fp; | 
|---|
| 265 |  | 
|---|
| 266 | /* Assemble local copy of element set. */ | 
|---|
| 267 | ul[0] = cm; | 
|---|
| 268 | ul[1] = alpha; | 
|---|
| 269 | ul[2] = pht; | 
|---|
| 270 | ul[3] = px; | 
|---|
| 271 | ul[4] = py; | 
|---|
| 272 | ul[5] = pz; | 
|---|
| 273 | ul[6] = vx; | 
|---|
| 274 | ul[7] = vy; | 
|---|
| 275 | ul[8] = vz; | 
|---|
| 276 | ul[9] = q; | 
|---|
| 277 | ul[10] = 0.0; | 
|---|
| 278 | ul[11] = date; | 
|---|
| 279 | ul[12] = psi; | 
|---|
| 280 |  | 
|---|
| 281 | /* Predict position+velocity at epoch of osculation. */ | 
|---|
| 282 | slaUe2pv ( date, ul, pv, &j ); | 
|---|
| 283 | if ( j ) { | 
|---|
| 284 | *jstat = -5; | 
|---|
| 285 | return; | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | /* Convert back to universal elements. */ | 
|---|
| 289 | slaPv2ue ( pv, date, cm - 1.0, u, &j ); | 
|---|
| 290 | if ( j ) { | 
|---|
| 291 | *jstat = -5; | 
|---|
| 292 | return; | 
|---|
| 293 | } | 
|---|
| 294 |  | 
|---|
| 295 | /* OK exit. */ | 
|---|
| 296 | *jstat = 0; | 
|---|
| 297 |  | 
|---|
| 298 | } | 
|---|