| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaEvp ( double date, double deqx, double dvb[3], double dpb[3], | 
|---|
| 4 | double dvh[3], double dph[3] ) | 
|---|
| 5 | /* | 
|---|
| 6 | **  - - - - - - - | 
|---|
| 7 | **   s l a E v p | 
|---|
| 8 | **  - - - - - - - | 
|---|
| 9 | ** | 
|---|
| 10 | **  Barycentric and heliocentric velocity and position of the Earth. | 
|---|
| 11 | ** | 
|---|
| 12 | **  Given: | 
|---|
| 13 | ** | 
|---|
| 14 | **     date    double     TDB (loosely ET) as a Modified Julian Date | 
|---|
| 15 | **                                         (JD-2400000.5) | 
|---|
| 16 | ** | 
|---|
| 17 | **     deqx    double     Julian epoch (e.g. 2000.0) of mean equator and | 
|---|
| 18 | **                        equinox of the vectors returned.  If deqx <= 0.0, | 
|---|
| 19 | **                        all vectors are referred to the mean equator and | 
|---|
| 20 | **                        equinox (FK5) of epoch date. | 
|---|
| 21 | ** | 
|---|
| 22 | **  Returned (all 3D Cartesian vectors): | 
|---|
| 23 | ** | 
|---|
| 24 | **     dvb,dpb double[3]  barycentric velocity, position | 
|---|
| 25 | ** | 
|---|
| 26 | **     dvh,dph double[3]  heliocentric velocity, position | 
|---|
| 27 | ** | 
|---|
| 28 | **  (Units are AU/s for velocity and AU for position) | 
|---|
| 29 | ** | 
|---|
| 30 | **  Called:  slaEpj, slaPrec | 
|---|
| 31 | ** | 
|---|
| 32 | **  Accuracy: | 
|---|
| 33 | ** | 
|---|
| 34 | **     The maximum deviations from the JPL DE96 ephemeris are as | 
|---|
| 35 | **     follows: | 
|---|
| 36 | ** | 
|---|
| 37 | **     barycentric velocity                  42  cm/s | 
|---|
| 38 | **     barycentric position                6900  km | 
|---|
| 39 | ** | 
|---|
| 40 | **     heliocentric velocity                 42  cm/s | 
|---|
| 41 | **     heliocentric position               1600  km | 
|---|
| 42 | ** | 
|---|
| 43 | **  This routine is adapted from the BARVEL and BARCOR Fortran | 
|---|
| 44 | **  subroutines of P.Stumpff, which are described in | 
|---|
| 45 | **  Astron. Astrophys. Suppl. Ser. 41, 1-8 (1980).  The present | 
|---|
| 46 | **  routine uses double precision throughout;  most of the other | 
|---|
| 47 | **  changes are essentially cosmetic and do not affect the | 
|---|
| 48 | **  results.  However, some adjustments have been made so as to | 
|---|
| 49 | **  give results that refer to the new (IAU 1976 "FK5") equinox | 
|---|
| 50 | **  and precession, although the differences these changes make | 
|---|
| 51 | **  relative to the results from Stumpff's original "FK4" version | 
|---|
| 52 | **  are smaller than the inherent accuracy of the algorithm.  One | 
|---|
| 53 | **  minor shortcoming in the original routines that has not been | 
|---|
| 54 | **  corrected is that better numerical accuracy could be achieved | 
|---|
| 55 | **  if the various polynomial evaluations were nested.  Note also | 
|---|
| 56 | **  that one of Stumpff's precession constants differs by 0.001 arcsec | 
|---|
| 57 | **  from the value given in the Explanatory Supplement to the A.E. | 
|---|
| 58 | ** | 
|---|
| 59 | **  Defined in slamac.h:  D2PI, DS2R, dmod | 
|---|
| 60 | ** | 
|---|
| 61 | **  Last revision:   21 March 1999 | 
|---|
| 62 | ** | 
|---|
| 63 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 64 | */ | 
|---|
| 65 | { | 
|---|
| 66 | int ideq, i, j, k; | 
|---|
| 67 |  | 
|---|
| 68 | double a, pertl, | 
|---|
| 69 | pertld, pertr, pertrd, cosa, sina, e, twoe, esq, g, twog, | 
|---|
| 70 | phi, f, sf, cf, phid, psid, pertp, pertpd, tl, sinlm, coslm, | 
|---|
| 71 | sigma, b, plon, pomg, pecc, flatm, flat; | 
|---|
| 72 |  | 
|---|
| 73 | double dt, dlocal, dml, | 
|---|
| 74 | deps, dparam, dpsi, d1pdro, drd, drld, dtl, dsinls, | 
|---|
| 75 | dcosls, dxhd, dyhd, dzhd, dxbd, dybd, dzbd, dcosep, | 
|---|
| 76 | dsinep, dyahd, dzahd, dyabd, dzabd, dr, | 
|---|
| 77 | dxh, dyh, dzh, dxb, dyb, dzb, dyah, dzah, dyab, | 
|---|
| 78 | dzab, depj, deqcor; | 
|---|
| 79 |  | 
|---|
| 80 | double sn[4], forbel[7], sorbel[17], sinlp[4], coslp[4]; | 
|---|
| 81 |  | 
|---|
| 82 | double dprema[3][3], w, vw[3]; | 
|---|
| 83 |  | 
|---|
| 84 | /* Sidereal rate dcsld in longitude, rate ccsgd in mean anomaly */ | 
|---|
| 85 | static double dcsld = 1.990987e-7; | 
|---|
| 86 | static double ccsgd = 1.990969e-7; | 
|---|
| 87 |  | 
|---|
| 88 | /* Some constants used in the calculation of the lunar contribution */ | 
|---|
| 89 | static double cckm  = 3.122140e-5; | 
|---|
| 90 | static double ccmld = 2.661699e-6; | 
|---|
| 91 | static double ccfdi = 2.399485e-7; | 
|---|
| 92 |  | 
|---|
| 93 | /* Besselian epoch 1950.0 expressed as a Julian epoch */ | 
|---|
| 94 | static double b1950 = 1949.9997904423; | 
|---|
| 95 |  | 
|---|
| 96 | /* | 
|---|
| 97 | ** ccpamv(k)=a*m*dl/dt (planets), dc1mme=1-mass(Earth+Moon) | 
|---|
| 98 | */ | 
|---|
| 99 | static double ccpamv[4] = { | 
|---|
| 100 | 8.326827e-11, | 
|---|
| 101 | 1.843484e-11, | 
|---|
| 102 | 1.988712e-12, | 
|---|
| 103 | 1.881276e-12 | 
|---|
| 104 | }; | 
|---|
| 105 | static double dc1mme = 0.99999696; | 
|---|
| 106 |  | 
|---|
| 107 | /* | 
|---|
| 108 | ** ccpam(k)=a*m(planets) | 
|---|
| 109 | ** ccim=inclination(Moon) | 
|---|
| 110 | */ | 
|---|
| 111 | static double ccpam[4] = { | 
|---|
| 112 | 4.960906e-3, | 
|---|
| 113 | 2.727436e-3, | 
|---|
| 114 | 8.392311e-4, | 
|---|
| 115 | 1.556861e-3 | 
|---|
| 116 | }; | 
|---|
| 117 | static double ccim = 8.978749e-2; | 
|---|
| 118 |  | 
|---|
| 119 | /* | 
|---|
| 120 | ** Constants dcfel(i,k) of fast changing elements | 
|---|
| 121 | */ | 
|---|
| 122 | static double dcfel[3][8] = { | 
|---|
| 123 | {  1.7400353,                /* dcfel[0][0] */ | 
|---|
| 124 | 6.2565836,                /* dcfel[0][1] */ | 
|---|
| 125 | 4.7199666,                /* dcfel[0][2] */ | 
|---|
| 126 | 1.9636505e-1,             /* dcfel[0][3] */ | 
|---|
| 127 | 4.1547339,                /* dcfel[0][4] */ | 
|---|
| 128 | 4.6524223,                /* dcfel[0][5] */ | 
|---|
| 129 | 4.2620486,                /* dcfel[0][6] */ | 
|---|
| 130 | 1.4740694 },              /* dcfel[0][7] */ | 
|---|
| 131 | {  6.2833195099091e+2,       /* dcfel[1][0] */ | 
|---|
| 132 | 6.2830194572674e+2,       /* dcfel[1][1] */ | 
|---|
| 133 | 8.3997091449254e+3,       /* dcfel[1][2] */ | 
|---|
| 134 | 8.4334662911720e+3,       /* dcfel[1][3] */ | 
|---|
| 135 | 5.2993466764997e+1,       /* dcfel[1][4] */ | 
|---|
| 136 | 2.1354275911213e+1,       /* dcfel[1][5] */ | 
|---|
| 137 | 7.5025342197656,          /* dcfel[1][6] */ | 
|---|
| 138 | 3.8377331909193 },        /* dcfel[1][7] */ | 
|---|
| 139 | {  5.2796e-6,                /* dcfel[2][0] */ | 
|---|
| 140 | -2.6180e-6,                /* dcfel[2][1] */ | 
|---|
| 141 | -1.9780e-5,                /* dcfel[2][2] */ | 
|---|
| 142 | -5.6044e-5,                /* dcfel[2][3] */ | 
|---|
| 143 | 5.8845e-6,                /* dcfel[2][4] */ | 
|---|
| 144 | 5.6797e-6,                /* dcfel[2][5] */ | 
|---|
| 145 | 5.5317e-6,                /* dcfel[2][6] */ | 
|---|
| 146 | 5.6093e-6 }               /* dcfel[2][7] */ | 
|---|
| 147 | }; | 
|---|
| 148 |  | 
|---|
| 149 | /* | 
|---|
| 150 | ** Constants dceps and ccsel(i,k) of slowly changing elements | 
|---|
| 151 | */ | 
|---|
| 152 | static double dceps[3] = { | 
|---|
| 153 | 4.093198e-1, | 
|---|
| 154 | -2.271110e-4, | 
|---|
| 155 | -2.860401e-8 | 
|---|
| 156 | }; | 
|---|
| 157 | static double ccsel[3][17] = { | 
|---|
| 158 | {  1.675104e-2,              /* ccsel[0][0]  */ | 
|---|
| 159 | 2.220221e-1,              /* ccsel[0][1]  */ | 
|---|
| 160 | 1.589963,                 /* ccsel[0][2]  */ | 
|---|
| 161 | 2.994089,                 /* ccsel[0][3]  */ | 
|---|
| 162 | 8.155457e-1,              /* ccsel[0][4]  */ | 
|---|
| 163 | 1.735614,                 /* ccsel[0][5]  */ | 
|---|
| 164 | 1.968564,                 /* ccsel[0][6]  */ | 
|---|
| 165 | 1.282417,                 /* ccsel[0][7]  */ | 
|---|
| 166 | 2.280820,                 /* ccsel[0][8]  */ | 
|---|
| 167 | 4.833473e-2,              /* ccsel[0][9]  */ | 
|---|
| 168 | 5.589232e-2,              /* ccsel[0][10] */ | 
|---|
| 169 | 4.634443e-2,              /* ccsel[0][11] */ | 
|---|
| 170 | 8.997041e-3,              /* ccsel[0][12] */ | 
|---|
| 171 | 2.284178e-2,              /* ccsel[0][13] */ | 
|---|
| 172 | 4.350267e-2,              /* ccsel[0][14] */ | 
|---|
| 173 | 1.348204e-2,              /* ccsel[0][15] */ | 
|---|
| 174 | 3.106570e-2 },            /* ccsel[0][16] */ | 
|---|
| 175 | { -4.179579e-5,              /* ccsel[1][0]  */ | 
|---|
| 176 | 2.809917e-2,              /* ccsel[1][1]  */ | 
|---|
| 177 | 3.418075e-2,              /* ccsel[1][2]  */ | 
|---|
| 178 | 2.590824e-2,              /* ccsel[1][3]  */ | 
|---|
| 179 | 2.486352e-2,              /* ccsel[1][4]  */ | 
|---|
| 180 | 1.763719e-2,              /* ccsel[1][5]  */ | 
|---|
| 181 | 1.524020e-2,              /* ccsel[1][6]  */ | 
|---|
| 182 | 8.703393e-3,              /* ccsel[1][7]  */ | 
|---|
| 183 | 1.918010e-2,              /* ccsel[1][8]  */ | 
|---|
| 184 | 1.641773e-4,              /* ccsel[1][9]  */ | 
|---|
| 185 | -3.455092e-4,              /* ccsel[1][10] */ | 
|---|
| 186 | -2.658234e-5,              /* ccsel[1][11] */ | 
|---|
| 187 | 6.329728e-6,              /* ccsel[1][12] */ | 
|---|
| 188 | -9.941590e-5,              /* ccsel[1][13] */ | 
|---|
| 189 | -6.839749e-5,              /* ccsel[1][14] */ | 
|---|
| 190 | 1.091504e-5,              /* ccsel[1][15] */ | 
|---|
| 191 | -1.665665e-4 },            /* ccsel[1][16] */ | 
|---|
| 192 | { -1.260516e-7,              /* ccsel[2][0]  */ | 
|---|
| 193 | 1.852532e-5,              /* ccsel[2][1]  */ | 
|---|
| 194 | 1.430200e-5,              /* ccsel[2][2]  */ | 
|---|
| 195 | 4.155840e-6,              /* ccsel[2][3]  */ | 
|---|
| 196 | 6.836840e-6,              /* ccsel[2][4]  */ | 
|---|
| 197 | 6.370440e-6,              /* ccsel[2][5]  */ | 
|---|
| 198 | -2.517152e-6,              /* ccsel[2][6]  */ | 
|---|
| 199 | 2.289292e-5,              /* ccsel[2][7]  */ | 
|---|
| 200 | 4.484520e-6,              /* ccsel[2][8]  */ | 
|---|
| 201 | -4.654200e-7,              /* ccsel[2][9]  */ | 
|---|
| 202 | -7.388560e-7,              /* ccsel[2][10] */ | 
|---|
| 203 | 7.757000e-8,              /* ccsel[2][11] */ | 
|---|
| 204 | -1.939256e-9,              /* ccsel[2][12] */ | 
|---|
| 205 | 6.787400e-8,              /* ccsel[2][13] */ | 
|---|
| 206 | -2.714956e-7,              /* ccsel[2][14] */ | 
|---|
| 207 | 6.903760e-7,              /* ccsel[2][15] */ | 
|---|
| 208 | -1.590188e-7 }             /* ccsel[2][16] */ | 
|---|
| 209 | }; | 
|---|
| 210 |  | 
|---|
| 211 | /* | 
|---|
| 212 | ** Constants of the arguments of the short-period perturbations | 
|---|
| 213 | ** by the planets:   dcargs(i,k) | 
|---|
| 214 | */ | 
|---|
| 215 | static double dcargs[2][15] = { | 
|---|
| 216 | {  5.0974222,                /* dcargs[0][0]  */ | 
|---|
| 217 | 3.9584962,                /* dcargs[0][1]  */ | 
|---|
| 218 | 1.6338070,                /* dcargs[0][2]  */ | 
|---|
| 219 | 2.5487111,                /* dcargs[0][3]  */ | 
|---|
| 220 | 4.9255514,                /* dcargs[0][4]  */ | 
|---|
| 221 | 1.3363463,                /* dcargs[0][5]  */ | 
|---|
| 222 | 1.6072053,                /* dcargs[0][6]  */ | 
|---|
| 223 | 1.3629480,                /* dcargs[0][7]  */ | 
|---|
| 224 | 5.5657014,                /* dcargs[0][8]  */ | 
|---|
| 225 | 5.0708205,                /* dcargs[0][9]  */ | 
|---|
| 226 | 3.9318944,                /* dcargs[0][10] */ | 
|---|
| 227 | 4.8989497,                /* dcargs[0][11] */ | 
|---|
| 228 | 1.3097446,                /* dcargs[0][12] */ | 
|---|
| 229 | 3.5147141,                /* dcargs[0][13] */ | 
|---|
| 230 | 3.5413158 },              /* dcargs[0][14] */ | 
|---|
| 231 | { -7.8604195454652e+2,       /* dcargs[1][0]  */ | 
|---|
| 232 | -5.7533848094674e+2,       /* dcargs[1][1]  */ | 
|---|
| 233 | -1.1506769618935e+3,       /* dcargs[1][2]  */ | 
|---|
| 234 | -3.9302097727326e+2,       /* dcargs[1][3]  */ | 
|---|
| 235 | -5.8849265665348e+2,       /* dcargs[1][4]  */ | 
|---|
| 236 | -5.5076098609303e+2,       /* dcargs[1][5]  */ | 
|---|
| 237 | -5.2237501616674e+2,       /* dcargs[1][6]  */ | 
|---|
| 238 | -1.1790629318198e+3,       /* dcargs[1][7]  */ | 
|---|
| 239 | -1.0977134971135e+3,       /* dcargs[1][8]  */ | 
|---|
| 240 | -1.5774000881978e+2,       /* dcargs[1][9]  */ | 
|---|
| 241 | 5.2963464780000e+1,       /* dcargs[1][10] */ | 
|---|
| 242 | 3.9809289073258e+1,       /* dcargs[1][11] */ | 
|---|
| 243 | 7.7540959633708e+1,       /* dcargs[1][12] */ | 
|---|
| 244 | 7.9618578146517e+1,       /* dcargs[1][13] */ | 
|---|
| 245 | -5.4868336758022e+2 }      /* dcargs[1][14] */ | 
|---|
| 246 | }; | 
|---|
| 247 |  | 
|---|
| 248 | /* | 
|---|
| 249 | ** Amplitudes ccamps(n,k) of the short-period perturbations | 
|---|
| 250 | */ | 
|---|
| 251 | static double ccamps[5][15] = { | 
|---|
| 252 | { -2.279594e-5,              /* ccamps[0][0]  */ | 
|---|
| 253 | -3.494537e-5,              /* ccamps[0][1]  */ | 
|---|
| 254 | 6.593466e-7,              /* ccamps[0][2]  */ | 
|---|
| 255 | 1.140767e-5,              /* ccamps[0][3]  */ | 
|---|
| 256 | 9.516893e-6,              /* ccamps[0][4]  */ | 
|---|
| 257 | 7.310990e-6,              /* ccamps[0][5]  */ | 
|---|
| 258 | -2.603449e-6,              /* ccamps[0][6]  */ | 
|---|
| 259 | -3.228859e-6,              /* ccamps[0][7]  */ | 
|---|
| 260 | 3.442177e-7,              /* ccamps[0][8]  */ | 
|---|
| 261 | 8.702406e-6,              /* ccamps[0][9]  */ | 
|---|
| 262 | -1.488378e-6,              /* ccamps[0][10] */ | 
|---|
| 263 | -8.043059e-6,              /* ccamps[0][11] */ | 
|---|
| 264 | 3.699128e-6,              /* ccamps[0][12] */ | 
|---|
| 265 | 2.550120e-6,              /* ccamps[0][13] */ | 
|---|
| 266 | -6.351059e-7 },            /* ccamps[0][14] */ | 
|---|
| 267 | {  1.407414e-5,              /* ccamps[1][0]  */ | 
|---|
| 268 | 2.860401e-7,              /* ccamps[1][1]  */ | 
|---|
| 269 | 1.322572e-5,              /* ccamps[1][2]  */ | 
|---|
| 270 | -2.049792e-5,              /* ccamps[1][3]  */ | 
|---|
| 271 | -2.748894e-6,              /* ccamps[1][4]  */ | 
|---|
| 272 | -1.924710e-6,              /* ccamps[1][5]  */ | 
|---|
| 273 | 7.359472e-6,              /* ccamps[1][6]  */ | 
|---|
| 274 | 1.308997e-7,              /* ccamps[1][7]  */ | 
|---|
| 275 | 2.671323e-6,              /* ccamps[1][8]  */ | 
|---|
| 276 | -8.421214e-6,              /* ccamps[1][9]  */ | 
|---|
| 277 | -1.251789e-5,              /* ccamps[1][10] */ | 
|---|
| 278 | -2.991300e-6,              /* ccamps[1][11] */ | 
|---|
| 279 | -3.316126e-6,              /* ccamps[1][12] */ | 
|---|
| 280 | -1.241123e-6,              /* ccamps[1][13] */ | 
|---|
| 281 | 2.341650e-6 },            /* ccamps[1][14] */ | 
|---|
| 282 | {  8.273188e-6,              /* ccamps[2][0]  */ | 
|---|
| 283 | 1.289448e-7,              /* ccamps[2][1]  */ | 
|---|
| 284 | 9.258695e-6,              /* ccamps[2][2]  */ | 
|---|
| 285 | -4.747930e-6,              /* ccamps[2][3]  */ | 
|---|
| 286 | -1.319381e-6,              /* ccamps[2][4]  */ | 
|---|
| 287 | -8.772849e-7,              /* ccamps[2][5]  */ | 
|---|
| 288 | 3.168357e-6,              /* ccamps[2][6]  */ | 
|---|
| 289 | 1.013137e-7,              /* ccamps[2][7]  */ | 
|---|
| 290 | 1.832858e-6,              /* ccamps[2][8]  */ | 
|---|
| 291 | -1.372341e-6,              /* ccamps[2][9]  */ | 
|---|
| 292 | 5.226868e-7,              /* ccamps[2][10] */ | 
|---|
| 293 | 1.473654e-7,              /* ccamps[2][11] */ | 
|---|
| 294 | 2.901257e-7,              /* ccamps[2][12] */ | 
|---|
| 295 | 9.901116e-8,              /* ccamps[2][13] */ | 
|---|
| 296 | 1.061492e-6 },            /* ccamps[2][14] */ | 
|---|
| 297 | {  1.340565e-5,              /* ccamps[3][0]  */ | 
|---|
| 298 | 1.627237e-5,              /* ccamps[3][1]  */ | 
|---|
| 299 | -4.674248e-7,              /* ccamps[3][2]  */ | 
|---|
| 300 | -2.638763e-6,              /* ccamps[3][3]  */ | 
|---|
| 301 | -4.549908e-6,              /* ccamps[3][4]  */ | 
|---|
| 302 | -3.334143e-6,              /* ccamps[3][5]  */ | 
|---|
| 303 | 1.119056e-6,              /* ccamps[3][6]  */ | 
|---|
| 304 | 2.403899e-6,              /* ccamps[3][7]  */ | 
|---|
| 305 | -2.394688e-7,              /* ccamps[3][8]  */ | 
|---|
| 306 | -1.455234e-6,              /* ccamps[3][9]  */ | 
|---|
| 307 | -2.049301e-7,              /* ccamps[3][10] */ | 
|---|
| 308 | -3.154542e-7,              /* ccamps[3][11] */ | 
|---|
| 309 | 3.407826e-7,              /* ccamps[3][12] */ | 
|---|
| 310 | 2.210482e-7,              /* ccamps[3][13] */ | 
|---|
| 311 | 2.878231e-7 },            /* ccamps[3][14] */ | 
|---|
| 312 | { -2.490817e-7,              /* ccamps[4][0]  */ | 
|---|
| 313 | -1.823138e-7,              /* ccamps[4][1]  */ | 
|---|
| 314 | -3.646275e-7,              /* ccamps[4][2]  */ | 
|---|
| 315 | -1.245408e-7,              /* ccamps[4][3]  */ | 
|---|
| 316 | -1.864821e-7,              /* ccamps[4][4]  */ | 
|---|
| 317 | -1.745256e-7,              /* ccamps[4][5]  */ | 
|---|
| 318 | -1.655307e-7,              /* ccamps[4][6]  */ | 
|---|
| 319 | -3.736225e-7,              /* ccamps[4][7]  */ | 
|---|
| 320 | -3.478444e-7,              /* ccamps[4][8]  */ | 
|---|
| 321 | -4.998479e-8,              /* ccamps[4][9]  */ | 
|---|
| 322 | 0.0,                      /* ccamps[4][10] */ | 
|---|
| 323 | 0.0,                      /* ccamps[4][11] */ | 
|---|
| 324 | 0.0,                      /* ccamps[4][12] */ | 
|---|
| 325 | 0.0,                      /* ccamps[4][13] */ | 
|---|
| 326 | 0.0 }                     /* ccamps[4][14] */ | 
|---|
| 327 | }; | 
|---|
| 328 |  | 
|---|
| 329 | /* | 
|---|
| 330 | ** Constants of the secular perturbations in longitude | 
|---|
| 331 | ** ccsec3 and ccsec(n,k) | 
|---|
| 332 | */ | 
|---|
| 333 | static double ccsec3 = -7.757020e-8; | 
|---|
| 334 | static double ccsec[3][4] = { | 
|---|
| 335 | {  1.289600e-6,              /* ccsec[0][0] */ | 
|---|
| 336 | 3.102810e-5,              /* ccsec[0][1] */ | 
|---|
| 337 | 9.124190e-6,              /* ccsec[0][2] */ | 
|---|
| 338 | 9.793240e-7 },            /* ccsec[0][3] */ | 
|---|
| 339 | {  5.550147e-1,              /* ccsec[1][0] */ | 
|---|
| 340 | 4.035027,                 /* ccsec[1][1] */ | 
|---|
| 341 | 9.990265e-1,              /* ccsec[1][2] */ | 
|---|
| 342 | 5.508259 },               /* ccsec[1][3] */ | 
|---|
| 343 | {  2.076942,                 /* ccsec[2][0] */ | 
|---|
| 344 | 3.525565e-1,              /* ccsec[2][1] */ | 
|---|
| 345 | 2.622706,                 /* ccsec[2][2] */ | 
|---|
| 346 | 1.559103e+1 }             /* ccsec[2][3] */ | 
|---|
| 347 | }; | 
|---|
| 348 |  | 
|---|
| 349 | /* | 
|---|
| 350 | ** Constants dcargm(i,k) of the arguments of the perturbations | 
|---|
| 351 | ** of the motion of the Moon | 
|---|
| 352 | */ | 
|---|
| 353 | static double dcargm[2][3] = { | 
|---|
| 354 | {  5.167983,                 /* dcargm[0][0] */ | 
|---|
| 355 | 5.491315,                 /* dcargm[0][1] */ | 
|---|
| 356 | 5.959853 },               /* dcargm[0][2] */ | 
|---|
| 357 | {  8.3286911095275e+3,       /* dcargm[1][0] */ | 
|---|
| 358 | -7.2140632838100e+3,       /* dcargm[1][1] */ | 
|---|
| 359 | 1.5542754389685e+4 }      /* dcargm[1][2] */ | 
|---|
| 360 | }; | 
|---|
| 361 |  | 
|---|
| 362 | /* | 
|---|
| 363 | ** Amplitudes ccampm(n,k) of the perturbations of the Moon | 
|---|
| 364 | */ | 
|---|
| 365 | static double ccampm[4][3] = { | 
|---|
| 366 | {  1.097594e-1,              /* ccampm[0][0] */ | 
|---|
| 367 | -2.223581e-2,              /* ccampm[0][1] */ | 
|---|
| 368 | 1.148966e-2 },            /* ccampm[0][2] */ | 
|---|
| 369 | {  2.896773e-7,              /* ccampm[1][0] */ | 
|---|
| 370 | 5.083103e-8,              /* ccampm[1][1] */ | 
|---|
| 371 | 5.658888e-8 },            /* ccampm[1][2] */ | 
|---|
| 372 | {  5.450474e-2,              /* ccampm[2][0] */ | 
|---|
| 373 | 1.002548e-2,              /* ccampm[2][1] */ | 
|---|
| 374 | 8.249439e-3 },            /* ccampm[2][2] */ | 
|---|
| 375 | {  1.438491e-7,              /* ccampm[3][0] */ | 
|---|
| 376 | -2.291823e-8,              /* ccampm[3][1] */ | 
|---|
| 377 | 4.063015e-8 }             /* ccampm[3][2] */ | 
|---|
| 378 | }; | 
|---|
| 379 |  | 
|---|
| 380 | /* | 
|---|
| 381 | ** | 
|---|
| 382 | ** Execution | 
|---|
| 383 | ** --------- | 
|---|
| 384 | ** | 
|---|
| 385 | ** Control parameter ideq, and time arguments | 
|---|
| 386 | */ | 
|---|
| 387 | ideq = ( deqx <= 0.0 ) ? 0 : 1; | 
|---|
| 388 | dt = ( date - 15019.5 ) / 36525.0; | 
|---|
| 389 |  | 
|---|
| 390 | /* Values of all elements for the instant date */ | 
|---|
| 391 | for ( k = 0; k < 8; k++ ) { | 
|---|
| 392 | dlocal = dmod ( dcfel[0][k] | 
|---|
| 393 | + dt * ( dcfel[1][k] | 
|---|
| 394 | + dt * dcfel[2][k] ), D2PI ); | 
|---|
| 395 | if ( k == 0 ) { | 
|---|
| 396 | dml = dlocal; | 
|---|
| 397 | } else { | 
|---|
| 398 | forbel[k-1] = dlocal; | 
|---|
| 399 | } | 
|---|
| 400 | } | 
|---|
| 401 | deps = dmod ( dceps[0] | 
|---|
| 402 | + dt * ( dceps[1] | 
|---|
| 403 | + dt * dceps[2] ) , D2PI ); | 
|---|
| 404 | for ( k = 0; k < 17; k++ ) { | 
|---|
| 405 | sorbel[k] = dmod ( ccsel[0][k] | 
|---|
| 406 | + dt * ( ccsel[1][k] | 
|---|
| 407 | + dt * ccsel[2][k] ), D2PI ); | 
|---|
| 408 | } | 
|---|
| 409 |  | 
|---|
| 410 | /* Secular perturbations in longitude */ | 
|---|
| 411 | for ( k = 0; k < 4; k++ ) { | 
|---|
| 412 | a = dmod ( ccsec[1][k] + dt * ccsec[2][k] , D2PI ); | 
|---|
| 413 | sn[k] = sin ( a ); | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 | /* Periodic perturbations of the EMB (Earth-Moon barycentre) */ | 
|---|
| 417 | pertl = ccsec[0][0] * sn[0] | 
|---|
| 418 | + ccsec[0][1] * sn[1] | 
|---|
| 419 | + ( ccsec[0][2] + dt * ccsec3 ) * sn[2] | 
|---|
| 420 | + ccsec[0][3] * sn[3]; | 
|---|
| 421 | pertld = 0.0; | 
|---|
| 422 | pertr = 0.0; | 
|---|
| 423 | pertrd = 0.0; | 
|---|
| 424 | for ( k = 0; k < 15; k++ ) { | 
|---|
| 425 | a = dmod ( dcargs[0][k] + dt * dcargs[1][k] , D2PI ); | 
|---|
| 426 | cosa = cos ( a ); | 
|---|
| 427 | sina = sin ( a ); | 
|---|
| 428 | pertl += ccamps[0][k] * cosa + ccamps[1][k] * sina; | 
|---|
| 429 | pertr += ccamps[2][k] * cosa + ccamps[3][k] * sina; | 
|---|
| 430 | if ( k < 10 ) { | 
|---|
| 431 | pertld += ( ccamps[1][k] * cosa | 
|---|
| 432 | - ccamps[0][k] * sina ) * ccamps[4][k]; | 
|---|
| 433 | pertrd += ( ccamps[3][k] * cosa | 
|---|
| 434 | - ccamps[2][k] * sina ) * ccamps[4][k]; | 
|---|
| 435 | } | 
|---|
| 436 | } | 
|---|
| 437 |  | 
|---|
| 438 | /* Elliptic part of the motion of the EMB */ | 
|---|
| 439 | e = sorbel[0]; | 
|---|
| 440 | twoe = e + e; | 
|---|
| 441 | esq = e * e; | 
|---|
| 442 | dparam = 1.0 - esq; | 
|---|
| 443 | g = forbel[0]; | 
|---|
| 444 | twog = g + g; | 
|---|
| 445 | phi = twoe * ( ( 1.0 - esq / 8.0 ) * sin ( g ) | 
|---|
| 446 | + 5.0 * e * sin ( twog ) / 8.0 | 
|---|
| 447 | + 13.0 * esq * sin ( g + twog ) / 24.0 ); | 
|---|
| 448 | f = forbel[0] + phi; | 
|---|
| 449 | sf = sin ( f ); | 
|---|
| 450 | cf = cos ( f ); | 
|---|
| 451 | dpsi = dparam / ( 1.0 + e * cf ); | 
|---|
| 452 | phid = twoe * ccsgd * ( ( 1.0 + esq * 1.5 ) * cf | 
|---|
| 453 | + e * ( 1.25 - sf * sf / 2.0 ) ); | 
|---|
| 454 | psid = ccsgd * e * sf / sqrt ( dparam ); | 
|---|
| 455 |  | 
|---|
| 456 | /* Perturbed heliocentric motion of the EMB */ | 
|---|
| 457 | d1pdro = 1.0 + pertr; | 
|---|
| 458 | drd = d1pdro * ( psid + dpsi * pertrd ); | 
|---|
| 459 | drld = d1pdro * dpsi * ( dcsld + phid + pertld ); | 
|---|
| 460 | dtl = dmod ( dml + phi + pertl , D2PI ); | 
|---|
| 461 | dsinls = sin ( dtl ); | 
|---|
| 462 | dcosls = cos ( dtl ); | 
|---|
| 463 | dxhd = drd * dcosls - drld * dsinls; | 
|---|
| 464 | dyhd = drd * dsinls + drld * dcosls; | 
|---|
| 465 |  | 
|---|
| 466 | /* Influence of eccentricity, evection and variation on the | 
|---|
| 467 | ** geocentric motion of the Moon */ | 
|---|
| 468 | pertl = 0.0; | 
|---|
| 469 | pertld = 0.0; | 
|---|
| 470 | pertp = 0.0; | 
|---|
| 471 | pertpd = 0.0; | 
|---|
| 472 | for ( k = 0; k < 3; k++ ) { | 
|---|
| 473 | a = dmod ( dcargm[0][k] + dt * dcargm[1][k] , D2PI ); | 
|---|
| 474 | sina = sin ( a ); | 
|---|
| 475 | cosa = cos ( a ); | 
|---|
| 476 | pertl += ccampm[0][k] * sina; | 
|---|
| 477 | pertld += ccampm[1][k] * cosa; | 
|---|
| 478 | pertp += ccampm[2][k] * cosa; | 
|---|
| 479 | pertpd += - ccampm[3][k] * sina; | 
|---|
| 480 | } | 
|---|
| 481 |  | 
|---|
| 482 | /* Heliocentric motion of the Earth */ | 
|---|
| 483 | tl = forbel[1] + pertl; | 
|---|
| 484 | sinlm = sin ( tl ); | 
|---|
| 485 | coslm = cos ( tl ); | 
|---|
| 486 | sigma = cckm / ( 1.0 + pertp ); | 
|---|
| 487 | a = sigma * ( ccmld + pertld ); | 
|---|
| 488 | b = sigma * pertpd; | 
|---|
| 489 | dxhd  += a * sinlm + b * coslm; | 
|---|
| 490 | dyhd  += - a * coslm + b * sinlm; | 
|---|
| 491 | dzhd  = - sigma * ccfdi * cos ( forbel[2] ); | 
|---|
| 492 |  | 
|---|
| 493 | /* Barycentric motion of the Earth */ | 
|---|
| 494 | dxbd = dxhd * dc1mme; | 
|---|
| 495 | dybd = dyhd * dc1mme; | 
|---|
| 496 | dzbd = dzhd * dc1mme; | 
|---|
| 497 | for ( k = 0; k < 4; k++ ) { | 
|---|
| 498 | plon = forbel[k+3]; | 
|---|
| 499 | pomg = sorbel[k+1]; | 
|---|
| 500 | pecc = sorbel[k+9]; | 
|---|
| 501 | tl = dmod( plon + 2.0 * pecc * sin ( plon - pomg ) , D2PI ); | 
|---|
| 502 | sinlp[k] = sin ( tl ); | 
|---|
| 503 | coslp[k] = cos ( tl ); | 
|---|
| 504 | dxbd += ccpamv[k] * ( sinlp[k] + pecc * sin ( pomg ) ); | 
|---|
| 505 | dybd += - ccpamv[k] * ( coslp[k] + pecc * cos ( pomg ) ); | 
|---|
| 506 | dzbd += - ccpamv[k] * sorbel[k+13] * cos ( plon - sorbel[k+5] ); | 
|---|
| 507 | } | 
|---|
| 508 |  | 
|---|
| 509 | /* Transition to mean equator of date */ | 
|---|
| 510 | dcosep = cos ( deps ); | 
|---|
| 511 | dsinep = sin ( deps ); | 
|---|
| 512 | dyahd  = dcosep * dyhd - dsinep * dzhd; | 
|---|
| 513 | dzahd  = dsinep * dyhd + dcosep * dzhd; | 
|---|
| 514 | dyabd  = dcosep * dybd - dsinep * dzbd; | 
|---|
| 515 | dzabd  = dsinep * dybd + dcosep * dzbd; | 
|---|
| 516 |  | 
|---|
| 517 | /* Heliocentric coordinates of the Earth */ | 
|---|
| 518 | dr = dpsi * d1pdro; | 
|---|
| 519 | flatm = ccim * sin ( forbel[2] ); | 
|---|
| 520 | a = sigma * cos ( flatm ); | 
|---|
| 521 | dxh = dr * dcosls - a * coslm; | 
|---|
| 522 | dyh = dr * dsinls - a * sinlm; | 
|---|
| 523 | dzh = - sigma * sin ( flatm ); | 
|---|
| 524 |  | 
|---|
| 525 | /* Barycentric coordinates of the Earth */ | 
|---|
| 526 | dxb = dxh * dc1mme; | 
|---|
| 527 | dyb = dyh * dc1mme; | 
|---|
| 528 | dzb = dzh * dc1mme; | 
|---|
| 529 | for ( k = 0; k < 4; k++ ) { | 
|---|
| 530 | flat = sorbel[k+13] * sin ( forbel[k+3] - sorbel[k+5] ); | 
|---|
| 531 | a = ccpam[k] * (1.0 - sorbel[k+9] * cos ( forbel[k+3] - sorbel[k+1])); | 
|---|
| 532 | b = a * cos(flat); | 
|---|
| 533 | dxb -= b * coslp[k]; | 
|---|
| 534 | dyb -= b * sinlp[k]; | 
|---|
| 535 | dzb -= a * sin ( flat ); | 
|---|
| 536 | } | 
|---|
| 537 |  | 
|---|
| 538 | /* Transition to mean equator of date */ | 
|---|
| 539 | dyah = dcosep * dyh - dsinep * dzh; | 
|---|
| 540 | dzah = dsinep * dyh + dcosep * dzh; | 
|---|
| 541 | dyab = dcosep * dyb - dsinep * dzb; | 
|---|
| 542 | dzab = dsinep * dyb + dcosep * dzb; | 
|---|
| 543 |  | 
|---|
| 544 | /* Copy result components into vectors, correcting for FK4 equinox */ | 
|---|
| 545 | depj = slaEpj ( date ); | 
|---|
| 546 | deqcor = DS2R * ( 0.035 + ( 0.00085 * ( depj - b1950 ) ) ); | 
|---|
| 547 | dvh[0] = dxhd - deqcor * dyahd; | 
|---|
| 548 | dvh[1] = dyahd + deqcor * dxhd; | 
|---|
| 549 | dvh[2] = dzahd; | 
|---|
| 550 | dvb[0] = dxbd - deqcor * dyabd; | 
|---|
| 551 | dvb[1] = dyabd + deqcor * dxbd; | 
|---|
| 552 | dvb[2] = dzabd; | 
|---|
| 553 | dph[0] = dxh - deqcor * dyah; | 
|---|
| 554 | dph[1] = dyah + deqcor * dxh; | 
|---|
| 555 | dph[2] = dzah; | 
|---|
| 556 | dpb[0] = dxb - deqcor * dyab; | 
|---|
| 557 | dpb[1] = dyab + deqcor * dxb; | 
|---|
| 558 | dpb[2] = dzab; | 
|---|
| 559 |  | 
|---|
| 560 | /* Was precession to another equinox requested? */ | 
|---|
| 561 | if ( ideq != 0 ) { | 
|---|
| 562 |  | 
|---|
| 563 | /* Yes: compute precession matrix from MJD date to Julian Epoch deqx */ | 
|---|
| 564 | slaPrec ( depj, deqx, dprema ); | 
|---|
| 565 |  | 
|---|
| 566 | /* Rotate dvh */ | 
|---|
| 567 | for ( j = 0; j < 3; j++ ) { | 
|---|
| 568 | w = 0.0; | 
|---|
| 569 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 570 | w += dprema[j][i] * dvh[i]; | 
|---|
| 571 | } | 
|---|
| 572 | vw[j] = w; | 
|---|
| 573 | } | 
|---|
| 574 | for ( j = 0; j < 3; j++ ) { | 
|---|
| 575 | dvh[j] = vw[j]; | 
|---|
| 576 | } | 
|---|
| 577 |  | 
|---|
| 578 | /* Rotate dvb */ | 
|---|
| 579 | for ( j = 0; j < 3; j++ ) { | 
|---|
| 580 | w = 0.0; | 
|---|
| 581 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 582 | w += dprema[j][i] * dvb[i]; | 
|---|
| 583 | } | 
|---|
| 584 | vw[j] = w; | 
|---|
| 585 | } | 
|---|
| 586 | for ( j = 0; j < 3; j++ ) { | 
|---|
| 587 | dvb[j] = vw[j]; | 
|---|
| 588 | } | 
|---|
| 589 |  | 
|---|
| 590 | /* Rotate dph */ | 
|---|
| 591 | for ( j = 0; j < 3; j++ ) { | 
|---|
| 592 | w = 0.0; | 
|---|
| 593 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 594 | w += dprema[j][i] * dph[i]; | 
|---|
| 595 | } | 
|---|
| 596 | vw[j] = w; | 
|---|
| 597 | } | 
|---|
| 598 | for ( j = 0; j < 3; j++ ) { | 
|---|
| 599 | dph[j] = vw[j]; | 
|---|
| 600 | } | 
|---|
| 601 |  | 
|---|
| 602 | /* Rotate dpb */ | 
|---|
| 603 | for ( j = 0; j < 3; j++ ) { | 
|---|
| 604 | w = 0.0; | 
|---|
| 605 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 606 | w += dprema[j][i] * dpb[i]; | 
|---|
| 607 | } | 
|---|
| 608 | vw[j] = w; | 
|---|
| 609 | } | 
|---|
| 610 | for ( j = 0; j < 3; j++ ) { | 
|---|
| 611 | dpb[j] = vw[j]; | 
|---|
| 612 | } | 
|---|
| 613 | } | 
|---|
| 614 | } | 
|---|