1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaFitxy ( int itype, int np,
|
---|
4 | double xye[][2], double xym[][2], double coeffs[6],
|
---|
5 | int *j )
|
---|
6 | /*
|
---|
7 | ** - - - - - - - - -
|
---|
8 | ** s l a F i t x y
|
---|
9 | ** - - - - - - - - -
|
---|
10 | **
|
---|
11 | ** Fit a linear model to relate two sets of [x,y] coordinates.
|
---|
12 | **
|
---|
13 | ** Given:
|
---|
14 | ** itype int type of model: 4 or 6 (note 1)
|
---|
15 | ** np int number of samples (note 2)
|
---|
16 | ** xye double[np][2] expected [x,y] for each sample
|
---|
17 | ** xym double[np][2] measured [x,y] for each sample
|
---|
18 | **
|
---|
19 | ** Returned:
|
---|
20 | ** coeffs double[6] coefficients of model (note 3)
|
---|
21 | ** *j int status: 0 = OK
|
---|
22 | ** -1 = illegal itype
|
---|
23 | ** -2 = insufficient data
|
---|
24 | ** -3 = singular solution
|
---|
25 | **
|
---|
26 | ** Notes:
|
---|
27 | **
|
---|
28 | ** 1) itype, which must be either 4 or 6, selects the type of model
|
---|
29 | ** fitted. Both allowed itype values produce a model coeffs which
|
---|
30 | ** consists of six coefficients, namely the zero points and, for
|
---|
31 | ** each of xe and ye, the coefficient of xm and ym. For itype=6,
|
---|
32 | ** all six coefficients are independent, modelling squash and shear
|
---|
33 | ** as well as origin, scale, and orientation. However, itype=4
|
---|
34 | ** selects the "solid body rotation" option; the model coeffs
|
---|
35 | ** still consists of the same six coefficients, but now two of
|
---|
36 | ** them are used twice (appropriately signed). Origin, scale
|
---|
37 | ** and orientation are still modelled, but not squash or shear -
|
---|
38 | ** the units of x and y have to be the same.
|
---|
39 | **
|
---|
40 | ** 2) For nc=4, np must be at least 2. For nc=6, np must be at
|
---|
41 | ** least 3.
|
---|
42 | **
|
---|
43 | ** 3) The model is returned in the array coeffs. Naming the
|
---|
44 | ** elements of coeffs as follows:
|
---|
45 | **
|
---|
46 | ** coeffs[0] = a
|
---|
47 | ** coeffs[1] = b
|
---|
48 | ** coeffs[2] = c
|
---|
49 | ** coeffs[3] = d
|
---|
50 | ** coeffs[4] = e
|
---|
51 | ** coeffs[5] = f
|
---|
52 | **
|
---|
53 | ** The model is:
|
---|
54 | **
|
---|
55 | ** xe = a + b*xm + c*ym
|
---|
56 | ** ye = d + e*xm + f*ym
|
---|
57 | **
|
---|
58 | ** For the "solid body rotation" option (itype=4), the
|
---|
59 | ** magnitudes of b and f, and of c and e, are equal. The
|
---|
60 | ** signs of these coefficients depend on whether there is a
|
---|
61 | ** sign reversal between xe,ye and xm,ym. Fits are performed
|
---|
62 | ** with and without a sign reversal and the best one chosen.
|
---|
63 | **
|
---|
64 | ** 4) Error status values j=-1 and -2 leave coeffs unchanged;
|
---|
65 | ** If j=-3 coeffs may have been changed.
|
---|
66 | **
|
---|
67 | ** See also slaPxy, slaInvf, slaXy2xy, slaDcmpf
|
---|
68 | **
|
---|
69 | ** Called: slaDmat, slaDmxv
|
---|
70 | **
|
---|
71 | ** Last revision: 31 October 1993
|
---|
72 | **
|
---|
73 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
74 | */
|
---|
75 | {
|
---|
76 | int i, jstat;
|
---|
77 | int iw[4];
|
---|
78 | int nsol;
|
---|
79 | double p, sxe, sxexm, sxeym, sye, syeym, syexm, sxm,
|
---|
80 | sym, sxmxm, sxmym, symym, xe, ye,
|
---|
81 | xm, ym, v[4], dm3[3][3], dm4[4][4], det,
|
---|
82 | sgn, sxxyy, sxyyx, sx2y2, a, b, c, d,
|
---|
83 | sdr2, xr, yr, aold, bold, cold, dold, sold;
|
---|
84 |
|
---|
85 | /* Preset the status */
|
---|
86 | *j = 0;
|
---|
87 |
|
---|
88 | /* Float the number of samples */
|
---|
89 | p = (double) np;
|
---|
90 |
|
---|
91 | /* Check itype */
|
---|
92 | if ( itype == 6 ) {
|
---|
93 |
|
---|
94 | /*
|
---|
95 | ** Six-coefficient linear model
|
---|
96 | ** ----------------------------
|
---|
97 | */
|
---|
98 |
|
---|
99 | /* Check enough samples */
|
---|
100 | if ( np >= 3 ) {
|
---|
101 |
|
---|
102 | /* Form summations */
|
---|
103 | sxe = 0.0;
|
---|
104 | sxexm = 0.0;
|
---|
105 | sxeym = 0.0;
|
---|
106 | sye = 0.0;
|
---|
107 | syeym = 0.0;
|
---|
108 | syexm = 0.0;
|
---|
109 | sxm = 0.0;
|
---|
110 | sym = 0.0;
|
---|
111 | sxmxm = 0.0;
|
---|
112 | sxmym = 0.0;
|
---|
113 | symym = 0.0;
|
---|
114 |
|
---|
115 | for ( i = 0; i < np; i++ ) {
|
---|
116 | xe = xye[i][0];
|
---|
117 | ye = xye[i][1];
|
---|
118 | xm = xym[i][0];
|
---|
119 | ym = xym[i][1];
|
---|
120 | sxe = sxe + xe;
|
---|
121 | sxexm = sxexm + xe * xm;
|
---|
122 | sxeym = sxeym + xe * ym;
|
---|
123 | sye = sye + ye;
|
---|
124 | syeym = syeym + ye * ym;
|
---|
125 | syexm = syexm + ye * xm;
|
---|
126 | sxm = sxm + xm;
|
---|
127 | sym = sym + ym;
|
---|
128 | sxmxm = sxmxm + xm * xm;
|
---|
129 | sxmym = sxmym + xm * ym;
|
---|
130 | symym = symym + ym * ym;
|
---|
131 | }
|
---|
132 |
|
---|
133 | /* Solve for a,b,c in xe = a + b*xm + c*ym */
|
---|
134 | v[0] = sxe;
|
---|
135 | v[1] = sxexm;
|
---|
136 | v[2] = sxeym;
|
---|
137 | dm3[0][0] = p;
|
---|
138 | dm3[0][1] = sxm;
|
---|
139 | dm3[0][2] = sym;
|
---|
140 | dm3[1][0] = sxm;
|
---|
141 | dm3[1][1] = sxmxm;
|
---|
142 | dm3[1][2] = sxmym;
|
---|
143 | dm3[2][0] = sym;
|
---|
144 | dm3[2][1] = sxmym;
|
---|
145 | dm3[2][2] = symym;
|
---|
146 | slaDmat ( 3, dm3[0], v, &det, &jstat, iw);
|
---|
147 | if (jstat == 0) {
|
---|
148 | for ( i = 0; i < 3; i++ ) {
|
---|
149 | coeffs[i] = v[i];
|
---|
150 | }
|
---|
151 |
|
---|
152 | /* Solve for d,e,f in ye = d + e*xm + f*ym */
|
---|
153 | v[0] = sye;
|
---|
154 | v[1] = syexm;
|
---|
155 | v[2] = syeym;
|
---|
156 | slaDmxv ( dm3, v, &coeffs[3] );
|
---|
157 | } else {
|
---|
158 |
|
---|
159 | /* No 6-coefficient solution possible */
|
---|
160 | *j = -3;
|
---|
161 | }
|
---|
162 | } else {
|
---|
163 |
|
---|
164 | /* Insufficient data for 6-coefficient fit */
|
---|
165 | *j = -2;
|
---|
166 | }
|
---|
167 | } else if ( itype == 4 ) {
|
---|
168 |
|
---|
169 | /*
|
---|
170 | ** Four-coefficient solid body rotation model
|
---|
171 | ** ------------------------------------------
|
---|
172 | */
|
---|
173 |
|
---|
174 | /* Check enough samples */
|
---|
175 | if ( np >= 2 ) {
|
---|
176 |
|
---|
177 | /* Try two solutions, first without then with flip in x */
|
---|
178 | for ( nsol = 1; nsol <= 2; nsol++ ) {
|
---|
179 | sgn = ( nsol == 1 ) ? 1.0 : -1.0;
|
---|
180 |
|
---|
181 | /* Form summations*/
|
---|
182 | sxe = 0.0;
|
---|
183 | sxxyy = 0.0;
|
---|
184 | sxyyx = 0.0;
|
---|
185 | sye = 0.0;
|
---|
186 | sxm = 0.0;
|
---|
187 | sym = 0.0;
|
---|
188 | sx2y2 = 0.0;
|
---|
189 | for ( i = 0; i < np; i++ ) {
|
---|
190 | xe = xye[i][0] * sgn;
|
---|
191 | ye = xye[i][1];
|
---|
192 | xm = xym[i][0];
|
---|
193 | ym = xym[i][1];
|
---|
194 | sxe = sxe + xe;
|
---|
195 | sxxyy = sxxyy + xe * xm + ye * ym;
|
---|
196 | sxyyx = sxyyx + xe * ym - ye * xm;
|
---|
197 | sye = sye + ye;
|
---|
198 | sxm = sxm + xm;
|
---|
199 | sym = sym + ym;
|
---|
200 | sx2y2 = sx2y2 + xm * xm + ym * ym;
|
---|
201 | }
|
---|
202 |
|
---|
203 | /*
|
---|
204 | ** Solve for a,b,c,d in: +/- xe = a + b*xm - c*ym
|
---|
205 | ** + ye = d + c*xm + b*ym
|
---|
206 | */
|
---|
207 | v[0] = sxe;
|
---|
208 | v[1] = sxxyy;
|
---|
209 | v[2] = sxyyx;
|
---|
210 | v[3] = sye;
|
---|
211 | dm4[0][0] = p;
|
---|
212 | dm4[0][1] = sxm;
|
---|
213 | dm4[0][2] = -sym;
|
---|
214 | dm4[0][3] = 0.0;
|
---|
215 | dm4[1][0] = sxm;
|
---|
216 | dm4[1][1] = sx2y2;
|
---|
217 | dm4[1][2] = 0.0;
|
---|
218 | dm4[1][3] = sym;
|
---|
219 | dm4[2][0] = sym;
|
---|
220 | dm4[2][1] = 0.0;
|
---|
221 | dm4[2][2] = -sx2y2;
|
---|
222 | dm4[2][3] = -sxm;
|
---|
223 | dm4[3][0] = 0.0;
|
---|
224 | dm4[3][1] = sym;
|
---|
225 | dm4[3][2] = sxm;
|
---|
226 | dm4[3][3] = p;
|
---|
227 | slaDmat ( 4, dm4[0], v, &det, &jstat, iw );
|
---|
228 | if ( jstat == 0 ) {
|
---|
229 | a = v[0];
|
---|
230 | b = v[1];
|
---|
231 | c = v[2];
|
---|
232 | d = v[3];
|
---|
233 |
|
---|
234 | /* Determine sum of radial errors squared */
|
---|
235 | sdr2 = 0.0;
|
---|
236 | for ( i = 0; i < np; i++ ) {
|
---|
237 | xm = xym[i][0];
|
---|
238 | ym = xym[i][1];
|
---|
239 | xr = a + b * xm - c * ym - xye[i][0] * sgn;
|
---|
240 | yr = d + c * xm + b * ym- xye[i][1];
|
---|
241 | sdr2 = sdr2 + xr * xr + yr * yr;
|
---|
242 | }
|
---|
243 | } else {
|
---|
244 |
|
---|
245 | /* Singular: set flag */
|
---|
246 | sdr2 = -1.0;
|
---|
247 | }
|
---|
248 |
|
---|
249 | /* If first pass and non-singular, save variables */
|
---|
250 | if ( nsol == 1 && jstat == 0 ) {
|
---|
251 | aold = a;
|
---|
252 | bold = b;
|
---|
253 | cold = c;
|
---|
254 | dold = d;
|
---|
255 | sold = sdr2;
|
---|
256 | }
|
---|
257 | }
|
---|
258 |
|
---|
259 | /* Pick the best of the two solutions */
|
---|
260 | if ( sold >= 0.0 && sold <= sdr2 ) {
|
---|
261 | coeffs[0] = aold;
|
---|
262 | coeffs[1] = bold;
|
---|
263 | coeffs[2] = -cold;
|
---|
264 | coeffs[3] = dold;
|
---|
265 | coeffs[4] = cold;
|
---|
266 | coeffs[5] = bold;
|
---|
267 | } else if ( jstat == 0 ) {
|
---|
268 | coeffs[0] = -a;
|
---|
269 | coeffs[1] = -b;
|
---|
270 | coeffs[2] = c;
|
---|
271 | coeffs[3] = d;
|
---|
272 | coeffs[4] = c;
|
---|
273 | coeffs[5] = b;
|
---|
274 | } else {
|
---|
275 |
|
---|
276 | /* No 4-coefficient fit possible */
|
---|
277 | *j = -3;
|
---|
278 | }
|
---|
279 | } else {
|
---|
280 |
|
---|
281 | /* Insufficient data for 4-coefficient fit */
|
---|
282 | *j = -2;
|
---|
283 | }
|
---|
284 | } else {
|
---|
285 |
|
---|
286 | /* Illegal itype - not 4 or 6 */
|
---|
287 | *j = -1;
|
---|
288 | }
|
---|
289 | }
|
---|