| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaFitxy ( int itype, int np, | 
|---|
| 4 | double xye[][2], double xym[][2], double coeffs[6], | 
|---|
| 5 | int *j ) | 
|---|
| 6 | /* | 
|---|
| 7 | **  - - - - - - - - - | 
|---|
| 8 | **   s l a F i t x y | 
|---|
| 9 | **  - - - - - - - - - | 
|---|
| 10 | ** | 
|---|
| 11 | **  Fit a linear model to relate two sets of [x,y] coordinates. | 
|---|
| 12 | ** | 
|---|
| 13 | **  Given: | 
|---|
| 14 | **     itype    int            type of model: 4 or 6 (note 1) | 
|---|
| 15 | **     np       int            number of samples (note 2) | 
|---|
| 16 | **     xye      double[np][2]  expected [x,y] for each sample | 
|---|
| 17 | **     xym      double[np][2]  measured [x,y] for each sample | 
|---|
| 18 | ** | 
|---|
| 19 | **  Returned: | 
|---|
| 20 | **     coeffs   double[6]      coefficients of model (note 3) | 
|---|
| 21 | **     *j       int            status:  0 = OK | 
|---|
| 22 | **                                     -1 = illegal itype | 
|---|
| 23 | **                                     -2 = insufficient data | 
|---|
| 24 | **                                     -3 = singular solution | 
|---|
| 25 | ** | 
|---|
| 26 | **  Notes: | 
|---|
| 27 | ** | 
|---|
| 28 | **    1)  itype, which must be either 4 or 6, selects the type of model | 
|---|
| 29 | **        fitted.  Both allowed itype values produce a model coeffs which | 
|---|
| 30 | **        consists of six coefficients, namely the zero points and, for | 
|---|
| 31 | **        each of xe and ye, the coefficient of xm and ym.  For itype=6, | 
|---|
| 32 | **        all six coefficients are independent, modelling squash and shear | 
|---|
| 33 | **        as well as origin, scale, and orientation.  However, itype=4 | 
|---|
| 34 | **        selects the "solid body rotation" option;  the model coeffs | 
|---|
| 35 | **        still consists of the same six coefficients, but now two of | 
|---|
| 36 | **        them are used twice (appropriately signed).  Origin, scale | 
|---|
| 37 | **        and orientation are still modelled, but not squash or shear - | 
|---|
| 38 | **        the units of x and y have to be the same. | 
|---|
| 39 | ** | 
|---|
| 40 | **    2)  For nc=4, np must be at least 2.  For nc=6, np must be at | 
|---|
| 41 | **        least 3. | 
|---|
| 42 | ** | 
|---|
| 43 | **    3)  The model is returned in the array coeffs.  Naming the | 
|---|
| 44 | **        elements of coeffs as follows: | 
|---|
| 45 | ** | 
|---|
| 46 | **                    coeffs[0] = a | 
|---|
| 47 | **                    coeffs[1] = b | 
|---|
| 48 | **                    coeffs[2] = c | 
|---|
| 49 | **                    coeffs[3] = d | 
|---|
| 50 | **                    coeffs[4] = e | 
|---|
| 51 | **                    coeffs[5] = f | 
|---|
| 52 | ** | 
|---|
| 53 | **        The model is: | 
|---|
| 54 | ** | 
|---|
| 55 | **              xe = a + b*xm + c*ym | 
|---|
| 56 | **              ye = d + e*xm + f*ym | 
|---|
| 57 | ** | 
|---|
| 58 | **        For the "solid body rotation" option (itype=4), the | 
|---|
| 59 | **        magnitudes of b and f, and of c and e, are equal.  The | 
|---|
| 60 | **        signs of these coefficients depend on whether there is a | 
|---|
| 61 | **        sign reversal between xe,ye and xm,ym.  Fits are performed | 
|---|
| 62 | **        with and without a sign reversal and the best one chosen. | 
|---|
| 63 | ** | 
|---|
| 64 | **    4)  Error status values j=-1 and -2 leave coeffs unchanged; | 
|---|
| 65 | **        If j=-3 coeffs may have been changed. | 
|---|
| 66 | ** | 
|---|
| 67 | **  See also slaPxy, slaInvf, slaXy2xy, slaDcmpf | 
|---|
| 68 | ** | 
|---|
| 69 | **  Called:  slaDmat, slaDmxv | 
|---|
| 70 | ** | 
|---|
| 71 | **  Last revision:   31 October 1993 | 
|---|
| 72 | ** | 
|---|
| 73 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 74 | */ | 
|---|
| 75 | { | 
|---|
| 76 | int i, jstat; | 
|---|
| 77 | int iw[4]; | 
|---|
| 78 | int nsol; | 
|---|
| 79 | double p, sxe, sxexm, sxeym, sye, syeym, syexm, sxm, | 
|---|
| 80 | sym, sxmxm, sxmym, symym, xe, ye, | 
|---|
| 81 | xm, ym, v[4], dm3[3][3], dm4[4][4], det, | 
|---|
| 82 | sgn, sxxyy, sxyyx, sx2y2, a, b, c, d, | 
|---|
| 83 | sdr2, xr, yr, aold, bold, cold, dold, sold; | 
|---|
| 84 |  | 
|---|
| 85 | /* Preset the status */ | 
|---|
| 86 | *j = 0; | 
|---|
| 87 |  | 
|---|
| 88 | /* Float the number of samples */ | 
|---|
| 89 | p = (double) np; | 
|---|
| 90 |  | 
|---|
| 91 | /* Check itype */ | 
|---|
| 92 | if ( itype == 6 ) { | 
|---|
| 93 |  | 
|---|
| 94 | /* | 
|---|
| 95 | ** Six-coefficient linear model | 
|---|
| 96 | ** ---------------------------- | 
|---|
| 97 | */ | 
|---|
| 98 |  | 
|---|
| 99 | /* Check enough samples */ | 
|---|
| 100 | if ( np >= 3 ) { | 
|---|
| 101 |  | 
|---|
| 102 | /* Form summations */ | 
|---|
| 103 | sxe = 0.0; | 
|---|
| 104 | sxexm = 0.0; | 
|---|
| 105 | sxeym = 0.0; | 
|---|
| 106 | sye = 0.0; | 
|---|
| 107 | syeym = 0.0; | 
|---|
| 108 | syexm = 0.0; | 
|---|
| 109 | sxm = 0.0; | 
|---|
| 110 | sym = 0.0; | 
|---|
| 111 | sxmxm = 0.0; | 
|---|
| 112 | sxmym = 0.0; | 
|---|
| 113 | symym = 0.0; | 
|---|
| 114 |  | 
|---|
| 115 | for ( i = 0; i < np; i++ ) { | 
|---|
| 116 | xe = xye[i][0]; | 
|---|
| 117 | ye = xye[i][1]; | 
|---|
| 118 | xm = xym[i][0]; | 
|---|
| 119 | ym = xym[i][1]; | 
|---|
| 120 | sxe = sxe + xe; | 
|---|
| 121 | sxexm = sxexm + xe * xm; | 
|---|
| 122 | sxeym = sxeym + xe * ym; | 
|---|
| 123 | sye = sye + ye; | 
|---|
| 124 | syeym = syeym + ye * ym; | 
|---|
| 125 | syexm = syexm + ye * xm; | 
|---|
| 126 | sxm = sxm + xm; | 
|---|
| 127 | sym = sym + ym; | 
|---|
| 128 | sxmxm = sxmxm + xm * xm; | 
|---|
| 129 | sxmym = sxmym + xm * ym; | 
|---|
| 130 | symym = symym + ym * ym; | 
|---|
| 131 | } | 
|---|
| 132 |  | 
|---|
| 133 | /* Solve for a,b,c in  xe = a + b*xm + c*ym */ | 
|---|
| 134 | v[0] = sxe; | 
|---|
| 135 | v[1] = sxexm; | 
|---|
| 136 | v[2] = sxeym; | 
|---|
| 137 | dm3[0][0] = p; | 
|---|
| 138 | dm3[0][1] = sxm; | 
|---|
| 139 | dm3[0][2] = sym; | 
|---|
| 140 | dm3[1][0] = sxm; | 
|---|
| 141 | dm3[1][1] = sxmxm; | 
|---|
| 142 | dm3[1][2] = sxmym; | 
|---|
| 143 | dm3[2][0] = sym; | 
|---|
| 144 | dm3[2][1] = sxmym; | 
|---|
| 145 | dm3[2][2] = symym; | 
|---|
| 146 | slaDmat ( 3, dm3[0], v, &det, &jstat, iw); | 
|---|
| 147 | if (jstat == 0) { | 
|---|
| 148 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 149 | coeffs[i] = v[i]; | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | /* Solve for d,e,f in  ye = d + e*xm + f*ym */ | 
|---|
| 153 | v[0] = sye; | 
|---|
| 154 | v[1] = syexm; | 
|---|
| 155 | v[2] = syeym; | 
|---|
| 156 | slaDmxv ( dm3, v, &coeffs[3] ); | 
|---|
| 157 | } else { | 
|---|
| 158 |  | 
|---|
| 159 | /* No 6-coefficient solution possible */ | 
|---|
| 160 | *j = -3; | 
|---|
| 161 | } | 
|---|
| 162 | } else { | 
|---|
| 163 |  | 
|---|
| 164 | /* Insufficient data for 6-coefficient fit */ | 
|---|
| 165 | *j = -2; | 
|---|
| 166 | } | 
|---|
| 167 | } else if ( itype == 4 ) { | 
|---|
| 168 |  | 
|---|
| 169 | /* | 
|---|
| 170 | ** Four-coefficient solid body rotation model | 
|---|
| 171 | ** ------------------------------------------ | 
|---|
| 172 | */ | 
|---|
| 173 |  | 
|---|
| 174 | /* Check enough samples */ | 
|---|
| 175 | if ( np >= 2 ) { | 
|---|
| 176 |  | 
|---|
| 177 | /* Try two solutions, first without then with flip in x */ | 
|---|
| 178 | for ( nsol = 1; nsol <= 2; nsol++ ) { | 
|---|
| 179 | sgn = ( nsol == 1 ) ? 1.0 : -1.0; | 
|---|
| 180 |  | 
|---|
| 181 | /* Form summations*/ | 
|---|
| 182 | sxe = 0.0; | 
|---|
| 183 | sxxyy = 0.0; | 
|---|
| 184 | sxyyx = 0.0; | 
|---|
| 185 | sye = 0.0; | 
|---|
| 186 | sxm = 0.0; | 
|---|
| 187 | sym = 0.0; | 
|---|
| 188 | sx2y2 = 0.0; | 
|---|
| 189 | for ( i = 0; i < np; i++ ) { | 
|---|
| 190 | xe = xye[i][0] * sgn; | 
|---|
| 191 | ye = xye[i][1]; | 
|---|
| 192 | xm = xym[i][0]; | 
|---|
| 193 | ym = xym[i][1]; | 
|---|
| 194 | sxe = sxe + xe; | 
|---|
| 195 | sxxyy = sxxyy + xe * xm + ye * ym; | 
|---|
| 196 | sxyyx = sxyyx + xe * ym - ye * xm; | 
|---|
| 197 | sye = sye + ye; | 
|---|
| 198 | sxm = sxm + xm; | 
|---|
| 199 | sym = sym + ym; | 
|---|
| 200 | sx2y2 = sx2y2 + xm * xm + ym * ym; | 
|---|
| 201 | } | 
|---|
| 202 |  | 
|---|
| 203 | /* | 
|---|
| 204 | ** Solve for a,b,c,d in:  +/- xe = a + b*xm - c*ym | 
|---|
| 205 | **                          + ye = d + c*xm + b*ym | 
|---|
| 206 | */ | 
|---|
| 207 | v[0] = sxe; | 
|---|
| 208 | v[1] = sxxyy; | 
|---|
| 209 | v[2] = sxyyx; | 
|---|
| 210 | v[3] = sye; | 
|---|
| 211 | dm4[0][0] = p; | 
|---|
| 212 | dm4[0][1] = sxm; | 
|---|
| 213 | dm4[0][2] = -sym; | 
|---|
| 214 | dm4[0][3] = 0.0; | 
|---|
| 215 | dm4[1][0] = sxm; | 
|---|
| 216 | dm4[1][1] = sx2y2; | 
|---|
| 217 | dm4[1][2] = 0.0; | 
|---|
| 218 | dm4[1][3] = sym; | 
|---|
| 219 | dm4[2][0] = sym; | 
|---|
| 220 | dm4[2][1] = 0.0; | 
|---|
| 221 | dm4[2][2] = -sx2y2; | 
|---|
| 222 | dm4[2][3] = -sxm; | 
|---|
| 223 | dm4[3][0] = 0.0; | 
|---|
| 224 | dm4[3][1] = sym; | 
|---|
| 225 | dm4[3][2] = sxm; | 
|---|
| 226 | dm4[3][3] = p; | 
|---|
| 227 | slaDmat ( 4, dm4[0], v, &det, &jstat, iw ); | 
|---|
| 228 | if ( jstat == 0 ) { | 
|---|
| 229 | a = v[0]; | 
|---|
| 230 | b = v[1]; | 
|---|
| 231 | c = v[2]; | 
|---|
| 232 | d = v[3]; | 
|---|
| 233 |  | 
|---|
| 234 | /* Determine sum of radial errors squared */ | 
|---|
| 235 | sdr2 = 0.0; | 
|---|
| 236 | for ( i = 0; i < np; i++ ) { | 
|---|
| 237 | xm = xym[i][0]; | 
|---|
| 238 | ym = xym[i][1]; | 
|---|
| 239 | xr = a + b * xm - c * ym - xye[i][0] * sgn; | 
|---|
| 240 | yr = d + c * xm + b * ym- xye[i][1]; | 
|---|
| 241 | sdr2 = sdr2 + xr * xr + yr * yr; | 
|---|
| 242 | } | 
|---|
| 243 | } else { | 
|---|
| 244 |  | 
|---|
| 245 | /* Singular: set flag */ | 
|---|
| 246 | sdr2 = -1.0; | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 | /* If first pass and non-singular, save variables */ | 
|---|
| 250 | if ( nsol == 1 && jstat == 0 ) { | 
|---|
| 251 | aold = a; | 
|---|
| 252 | bold = b; | 
|---|
| 253 | cold = c; | 
|---|
| 254 | dold = d; | 
|---|
| 255 | sold = sdr2; | 
|---|
| 256 | } | 
|---|
| 257 | } | 
|---|
| 258 |  | 
|---|
| 259 | /* Pick the best of the two solutions */ | 
|---|
| 260 | if ( sold >= 0.0 && sold <= sdr2 ) { | 
|---|
| 261 | coeffs[0] = aold; | 
|---|
| 262 | coeffs[1] = bold; | 
|---|
| 263 | coeffs[2] = -cold; | 
|---|
| 264 | coeffs[3] = dold; | 
|---|
| 265 | coeffs[4] = cold; | 
|---|
| 266 | coeffs[5] = bold; | 
|---|
| 267 | } else if ( jstat == 0 ) { | 
|---|
| 268 | coeffs[0] = -a; | 
|---|
| 269 | coeffs[1] = -b; | 
|---|
| 270 | coeffs[2] = c; | 
|---|
| 271 | coeffs[3] = d; | 
|---|
| 272 | coeffs[4] = c; | 
|---|
| 273 | coeffs[5] = b; | 
|---|
| 274 | } else { | 
|---|
| 275 |  | 
|---|
| 276 | /* No 4-coefficient fit possible */ | 
|---|
| 277 | *j = -3; | 
|---|
| 278 | } | 
|---|
| 279 | } else { | 
|---|
| 280 |  | 
|---|
| 281 | /* Insufficient data for 4-coefficient fit */ | 
|---|
| 282 | *j = -2; | 
|---|
| 283 | } | 
|---|
| 284 | } else { | 
|---|
| 285 |  | 
|---|
| 286 | /* Illegal itype - not 4 or 6 */ | 
|---|
| 287 | *j = -1; | 
|---|
| 288 | } | 
|---|
| 289 | } | 
|---|