1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaFk425 ( double r1950, double d1950, double dr1950,
|
---|
4 | double dd1950, double p1950, double v1950,
|
---|
5 | double *r2000, double *d2000, double *dr2000,
|
---|
6 | double *dd2000, double *p2000, double *v2000 )
|
---|
7 | /*
|
---|
8 | ** - - - - - - - - -
|
---|
9 | ** s l a F k 4 2 5
|
---|
10 | ** - - - - - - - - -
|
---|
11 | **
|
---|
12 | ** Convert B1950.0 FK4 star data to J2000.0 FK5.
|
---|
13 | **
|
---|
14 | ** (double precision)
|
---|
15 | **
|
---|
16 | ** This routine converts stars from the old, Bessel-Newcomb, FK4
|
---|
17 | ** system to the new, IAU 1976, FK5, Fricke system. The precepts
|
---|
18 | ** of Smith et al (Ref 1) are followed, using the implementation
|
---|
19 | ** by Yallop et al (Ref 2) of a matrix method due to Standish.
|
---|
20 | ** Kinoshita's development of Andoyer's post-Newcomb precession is
|
---|
21 | ** used. The numerical constants from Seidelmann et al (Ref 3) are
|
---|
22 | ** used canonically.
|
---|
23 | **
|
---|
24 | ** Given: (all B1950.0,FK4)
|
---|
25 | **
|
---|
26 | ** r1950,d1950 double B1950.0 RA,dec (rad)
|
---|
27 | ** dr1950,dd1950 double B1950.0 proper motions (rad/trop.yr)
|
---|
28 | ** p1950 double parallax (arcsec)
|
---|
29 | ** v1950 double radial velocity (km/s, +ve = moving away)
|
---|
30 | **
|
---|
31 | ** Returned: (all J2000.0,FK5)
|
---|
32 | **
|
---|
33 | ** *r2000,*d2000 double J2000.0 RA,dec (rad)
|
---|
34 | ** *dr2000,*dd2000 double J2000.0 proper motions (rad/jul.yr)
|
---|
35 | ** *p2000 double parallax (arcsec)
|
---|
36 | ** *v2000 double radial velocity (km/s, +ve = moving away)
|
---|
37 | **
|
---|
38 | ** Notes:
|
---|
39 | **
|
---|
40 | ** 1) The proper motions in RA are dRA/dt rather than
|
---|
41 | ** cos(Dec)*dRA/dt, and are per year rather than per century.
|
---|
42 | **
|
---|
43 | ** 2) Conversion from Besselian epoch 1950.0 to Julian epoch
|
---|
44 | ** 2000.0 only is provided for. Conversions involving other
|
---|
45 | ** epochs will require use of the appropriate precession,
|
---|
46 | ** proper motion, and E-terms routines before and/or
|
---|
47 | ** after FK425 is called.
|
---|
48 | **
|
---|
49 | ** 3) In the FK4 catalogue the proper motions of stars within
|
---|
50 | ** 10 degrees of the poles do not embody the differential
|
---|
51 | ** E-term effect and should, strictly speaking, be handled
|
---|
52 | ** in a different manner from stars outside these regions.
|
---|
53 | ** However, given the general lack of homogeneity of the star
|
---|
54 | ** data available for routine astrometry, the difficulties of
|
---|
55 | ** handling positions that may have been determined from
|
---|
56 | ** astrometric fields spanning the polar and non-polar regions,
|
---|
57 | ** the likelihood that the differential E-terms effect was not
|
---|
58 | ** taken into account when allowing for proper motion in past
|
---|
59 | ** astrometry, and the undesirability of a discontinuity in
|
---|
60 | ** the algorithm, the decision has been made in this routine to
|
---|
61 | ** include the effect of differential E-terms on the proper
|
---|
62 | ** motions for all stars, whether polar or not. At epoch 2000,
|
---|
63 | ** and measuring on the sky rather than in terms of dRA, the
|
---|
64 | ** errors resulting from this simplification are less than
|
---|
65 | ** 1 milliarcsecond in position and 1 milliarcsecond per
|
---|
66 | ** century in proper motion.
|
---|
67 | **
|
---|
68 | ** References:
|
---|
69 | **
|
---|
70 | ** 1 Smith, C.A. et al, 1989. "The transformation of astrometric
|
---|
71 | ** catalog systems to the equinox J2000.0". Astron.J. 97, 265.
|
---|
72 | **
|
---|
73 | ** 2 Yallop, B.D. et al, 1989. "Transformation of mean star places
|
---|
74 | ** from FK4 B1950.0 to FK5 J2000.0 using matrices in 6-space".
|
---|
75 | ** Astron.J. 97, 274.
|
---|
76 | **
|
---|
77 | ** 3 Seidelmann, P.K. (ed), 1992. "Explanatory Supplement to
|
---|
78 | ** the Astronomical Almanac", ISBN 0-935702-68-7.
|
---|
79 | **
|
---|
80 | ** Defined in slamac.h: D2PI
|
---|
81 | **
|
---|
82 | ** Last revision: 26 September 1998
|
---|
83 | **
|
---|
84 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
85 | */
|
---|
86 | {
|
---|
87 | double r, d, ur, ud, px, rv, sr, cr, sd, cd, w, wd,
|
---|
88 | x, y, z, xd, yd, zd,
|
---|
89 | rxysq, rxyzsq, rxy, rxyz, spxy, spxyz;
|
---|
90 | int i, j;
|
---|
91 |
|
---|
92 | /* Star position and velocity vectors */
|
---|
93 | double r0[3], rd0[3];
|
---|
94 |
|
---|
95 | /* Combined position and velocity vectors */
|
---|
96 | double v1[6], v2[6];
|
---|
97 |
|
---|
98 | /* Radians per year to arcsec per century */
|
---|
99 | static double pmf = 100.0 * 60.0 * 60.0 * 360.0 / D2PI;
|
---|
100 |
|
---|
101 | /* Small number to avoid arithmetic problems */
|
---|
102 | double tiny = 1.0e-30;
|
---|
103 |
|
---|
104 | /*
|
---|
105 | ** Canonical constants (see references)
|
---|
106 | */
|
---|
107 |
|
---|
108 | /*
|
---|
109 | ** Km per sec to AU per tropical century
|
---|
110 | ** = 86400 * 36524.2198782 / 1.49597870e8
|
---|
111 | */
|
---|
112 | double vf = 21.095;
|
---|
113 |
|
---|
114 | /* Constant vector and matrix (by rows) */
|
---|
115 | static double a[3] = { -1.62557e-6, -0.31919e-6, -0.13843e-6 };
|
---|
116 | static double ad[3] = { 1.245e-3, -1.580e-3, -0.659e-3 };
|
---|
117 | static double em[6][6] =
|
---|
118 | {
|
---|
119 | { 0.9999256782, /* em[0][0] */
|
---|
120 | -0.0111820611, /* em[0][1] */
|
---|
121 | -0.0048579477, /* em[0][2] */
|
---|
122 | 0.00000242395018, /* em[0][3] */
|
---|
123 | -0.00000002710663, /* em[0][4] */
|
---|
124 | -0.00000001177656 }, /* em[0][5] */
|
---|
125 |
|
---|
126 | { 0.0111820610, /* em[1][0] */
|
---|
127 | 0.9999374784, /* em[1][1] */
|
---|
128 | -0.0000271765, /* em[1][2] */
|
---|
129 | 0.00000002710663, /* em[1][3] */
|
---|
130 | 0.00000242397878, /* em[1][4] */
|
---|
131 | -0.00000000006587 }, /* em[1][5] */
|
---|
132 |
|
---|
133 | { 0.0048579479, /* em[2][0] */
|
---|
134 | -0.0000271474, /* em[2][1] */
|
---|
135 | 0.9999881997, /* em[2][2] */
|
---|
136 | 0.00000001177656, /* em[2][3] */
|
---|
137 | -0.00000000006582, /* em[2][4] */
|
---|
138 | 0.00000242410173 }, /* em[2][5] */
|
---|
139 |
|
---|
140 | { -0.000551, /* em[3][0] */
|
---|
141 | -0.238565, /* em[3][1] */
|
---|
142 | 0.435739, /* em[3][2] */
|
---|
143 | 0.99994704, /* em[3][3] */
|
---|
144 | -0.01118251, /* em[3][4] */
|
---|
145 | -0.00485767 }, /* em[3][5] */
|
---|
146 |
|
---|
147 | { 0.238514, /* em[4][0] */
|
---|
148 | -0.002667, /* em[4][1] */
|
---|
149 | -0.008541, /* em[4][2] */
|
---|
150 | 0.01118251, /* em[4][3] */
|
---|
151 | 0.99995883, /* em[4][4] */
|
---|
152 | -0.00002718 }, /* em[4][5] */
|
---|
153 |
|
---|
154 | { -0.435623, /* em[5][0] */
|
---|
155 | 0.012254, /* em[5][1] */
|
---|
156 | 0.002117, /* em[5][2] */
|
---|
157 | 0.00485767, /* em[5][3] */
|
---|
158 | -0.00002714, /* em[5][4] */
|
---|
159 | 1.00000956 } /* em[5][5] */
|
---|
160 | };
|
---|
161 |
|
---|
162 | /* Pick up B1950 data (units radians and arcsec/tc) */
|
---|
163 | r = r1950;
|
---|
164 | d = d1950;
|
---|
165 | ur = dr1950 * pmf;
|
---|
166 | ud = dd1950 * pmf;
|
---|
167 | px = p1950;
|
---|
168 | rv = v1950;
|
---|
169 |
|
---|
170 | /* Spherical to Cartesian */
|
---|
171 | sr = sin ( r );
|
---|
172 | cr = cos ( r );
|
---|
173 | sd = sin ( d );
|
---|
174 | cd = cos ( d );
|
---|
175 |
|
---|
176 | r0[0] = cr * cd;
|
---|
177 | r0[1] = sr * cd;
|
---|
178 | r0[2] = sd;
|
---|
179 |
|
---|
180 | w = vf * rv * px;
|
---|
181 |
|
---|
182 | rd0[0] = ( -sr * cd * ur ) - ( cr * sd * ud ) + ( w * r0[0] );
|
---|
183 | rd0[1] = ( cr * cd * ur ) - ( sr * sd * ud ) + ( w * r0[1] );
|
---|
184 | rd0[2] = ( cd * ud ) + ( w * r0[2] );
|
---|
185 |
|
---|
186 | /* Allow for e-terms and express as position+velocity 6-vector */
|
---|
187 | w = ( r0[0] * a[0] ) + ( r0[1] * a[1] ) + ( r0[2] * a[2] );
|
---|
188 | wd = ( r0[0] * ad[0] ) + ( r0[1] * ad[1] ) + ( r0[2] * ad[2] );
|
---|
189 |
|
---|
190 | for ( i = 0; i < 3; i++ ) {
|
---|
191 | v1[i] = r0[i] - a[i] + w * r0[i];
|
---|
192 | v1[i+3] = rd0[i] - ad[i] + wd * r0[i];
|
---|
193 | }
|
---|
194 |
|
---|
195 | /* Convert position+velocity vector to Fricke system */
|
---|
196 | for ( i = 0; i < 6; i++ ) {
|
---|
197 | w = 0.0;
|
---|
198 | for ( j = 0; j < 6; j++ ) {
|
---|
199 | w += em[i][j] * v1[j];
|
---|
200 | }
|
---|
201 | v2[i] = w;
|
---|
202 | }
|
---|
203 |
|
---|
204 | /* Revert to spherical coordinates */
|
---|
205 | x = v2[0];
|
---|
206 | y = v2[1];
|
---|
207 | z = v2[2];
|
---|
208 | xd = v2[3];
|
---|
209 | yd = v2[4];
|
---|
210 | zd = v2[5];
|
---|
211 |
|
---|
212 | rxysq = ( x * x ) + ( y * y );
|
---|
213 | rxyzsq = ( rxysq ) + ( z * z );
|
---|
214 | rxy = sqrt ( rxysq );
|
---|
215 | rxyz = sqrt ( rxyzsq );
|
---|
216 |
|
---|
217 | spxy = ( x * xd ) + ( y * yd );
|
---|
218 | spxyz = spxy + ( z * zd );
|
---|
219 |
|
---|
220 | if ( (x == 0.0) && (y == 0.0) )
|
---|
221 | r = 0.0;
|
---|
222 | else {
|
---|
223 | r = atan2 ( y, x );
|
---|
224 | if ( r < 0.0 )
|
---|
225 | r += D2PI;
|
---|
226 | }
|
---|
227 | d = atan2 ( z, rxy );
|
---|
228 |
|
---|
229 | if ( rxy > tiny ) {
|
---|
230 | ur = ( ( x * yd ) - ( y * xd ) ) / rxysq;
|
---|
231 | ud = ( ( zd * rxysq ) - ( z * spxy ) ) / ( rxyzsq * rxy );
|
---|
232 | }
|
---|
233 |
|
---|
234 | if ( px > tiny ) {
|
---|
235 | rv = spxyz / ( px * rxyz * vf );
|
---|
236 | px = px / rxyz;
|
---|
237 | }
|
---|
238 |
|
---|
239 | /* Return results */
|
---|
240 | *r2000 = r;
|
---|
241 | *d2000 = d;
|
---|
242 | *dr2000 = ur / pmf;
|
---|
243 | *dd2000 = ud / pmf;
|
---|
244 | *v2000 = rv;
|
---|
245 | *p2000 = px;
|
---|
246 | }
|
---|