1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | double slaGmsta ( double date, double ut )
|
---|
4 | /*
|
---|
5 | ** - - - - - - - - -
|
---|
6 | ** s l a G m s t a
|
---|
7 | ** - - - - - - - - -
|
---|
8 | **
|
---|
9 | ** Conversion from Universal Time to Greenwich mean sidereal time,
|
---|
10 | ** with rounding errors minimized.
|
---|
11 | **
|
---|
12 | ** (double precision)
|
---|
13 | **
|
---|
14 | ** Given:
|
---|
15 | * date double UT1 date (MJD: integer part of JD-2400000.5))
|
---|
16 | ** ut double UT1 time (fraction of a day)
|
---|
17 | **
|
---|
18 | ** The result is the Greenwich Mean Sidereal Time (double precision,
|
---|
19 | ** radians, in the range 0 to 2pi).
|
---|
20 | **
|
---|
21 | ** There is no restriction on how the UT is apportioned between the
|
---|
22 | ** date and ut1 arguments. Either of the two arguments could, for
|
---|
23 | ** example, be zero and the entire date+time supplied in the other.
|
---|
24 | ** However, the routine is designed to deliver maximum accuracy when
|
---|
25 | ** the date argument is a whole number and the ut argument lies in
|
---|
26 | ** the range 0 to 1, or vice versa.
|
---|
27 | **
|
---|
28 | ** The algorithm is based on the IAU 1982 expression (see page S15 of
|
---|
29 | ** the 1984 Astronomical Almanac). This is always described as giving
|
---|
30 | ** the GMST at 0 hours UT1. In fact, it gives the difference between
|
---|
31 | ** the GMST and the UT, the steady 4-minutes-per-day drawing-ahead of
|
---|
32 | ** ST with respect to UT. When whole days are ignored, the expression
|
---|
33 | ** happens to equal the GMST at 0 hours UT1 each day.
|
---|
34 | **
|
---|
35 | ** In this routine, the entire UT1 (the sum of the two arguments date
|
---|
36 | ** and ut) is used directly as the argument for the standard formula.
|
---|
37 | ** The UT1 is then added, but omitting whole days to conserve accuracy.
|
---|
38 | **
|
---|
39 | ** See also the routine slaGmst, which accepts the UT1 as a single
|
---|
40 | ** argument. Compared with slaGmst, the extra numerical precision
|
---|
41 | ** delivered by the present routine is unlikely to be important in
|
---|
42 | ** an absolute sense, but may be useful when critically comparing
|
---|
43 | ** algorithms and in applications where two sidereal times close
|
---|
44 | ** together are differenced.
|
---|
45 | **
|
---|
46 | ** Called: slaDranrm
|
---|
47 | **
|
---|
48 | ** Defined in slamac.h: DS2R, dmod
|
---|
49 | **
|
---|
50 | ** Last revision: 13 April 1998
|
---|
51 | **
|
---|
52 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
53 | */
|
---|
54 | {
|
---|
55 | double d1, d2, t;
|
---|
56 |
|
---|
57 | /* Julian centuries since J2000. */
|
---|
58 | if ( date < ut ) {
|
---|
59 | d1 = date;
|
---|
60 | d2 = ut;
|
---|
61 | } else {
|
---|
62 | d1 = ut;
|
---|
63 | d2 = date;
|
---|
64 | }
|
---|
65 | t = ( d1 + ( d2 - 51544.5 ) ) / 36525.0;
|
---|
66 |
|
---|
67 | /* GMST at this UT1. */
|
---|
68 | return slaDranrm ( DS2R * ( 24110.54841
|
---|
69 | + ( 8640184.812866
|
---|
70 | + ( 0.093104
|
---|
71 | - 6.2e-6 * t ) * t ) * t
|
---|
72 | + 86400.0 * ( dmod ( d1, 1.0 ) +
|
---|
73 | dmod ( d2, 1.0 ) ) ) );
|
---|
74 | }
|
---|