| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | void slaM2av ( float rmat[3][3], float axvec[3] )
|
|---|
| 4 | /*
|
|---|
| 5 | ** - - - - - - - -
|
|---|
| 6 | ** s l a M 2 a v
|
|---|
| 7 | ** - - - - - - - -
|
|---|
| 8 | **
|
|---|
| 9 | ** From a rotation matrix, determine the corresponding axial vector.
|
|---|
| 10 | **
|
|---|
| 11 | ** (single precision)
|
|---|
| 12 | **
|
|---|
| 13 | ** A rotation matrix describes a rotation about some arbitrary axis.
|
|---|
| 14 | ** The axis is called the Euler axis, and the angle through which the
|
|---|
| 15 | ** reference frame rotates is called the Euler angle. The axial
|
|---|
| 16 | ** vector returned by this routine has the same direction as the
|
|---|
| 17 | ** Euler axis, and its magnitude is the Euler angle in radians. (The
|
|---|
| 18 | ** magnitude and direction can be separated by means of the routine
|
|---|
| 19 | ** slaVn.)
|
|---|
| 20 | **
|
|---|
| 21 | ** Given:
|
|---|
| 22 | ** rmat float[3][3] rotation matrix
|
|---|
| 23 | **
|
|---|
| 24 | ** Returned:
|
|---|
| 25 | ** axvec float[3] axial vector (radians)
|
|---|
| 26 | **
|
|---|
| 27 | ** The reference frame rotates clockwise as seen looking along
|
|---|
| 28 | ** the axial vector from the origin.
|
|---|
| 29 | **
|
|---|
| 30 | ** If rmat is null, so is the result.
|
|---|
| 31 | **
|
|---|
| 32 | ** Last revision: 9 April 1998
|
|---|
| 33 | **
|
|---|
| 34 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 35 | */
|
|---|
| 36 | {
|
|---|
| 37 | float x, y, z, s2, c2, phi, f;
|
|---|
| 38 |
|
|---|
| 39 | x = rmat[1][2] - rmat[2][1];
|
|---|
| 40 | y = rmat[2][0] - rmat[0][2];
|
|---|
| 41 | z = rmat[0][1] - rmat[1][0];
|
|---|
| 42 | s2 = (float) sqrt ( (double) ( x * x + y * y + z * z ) );
|
|---|
| 43 | if ( s2 != 0.0f ) {
|
|---|
| 44 | c2 = rmat[0][0] + rmat[1][1] + rmat[2][2] - 1.0f;
|
|---|
| 45 | phi = (float) atan2 ( (double) s2 / 2.0, (double) c2 / 2.0 );
|
|---|
| 46 | f = phi / s2;
|
|---|
| 47 | axvec[0] = x * f;
|
|---|
| 48 | axvec[1] = y * f;
|
|---|
| 49 | axvec[2] = z * f;
|
|---|
| 50 | } else {
|
|---|
| 51 | axvec[0] = 0.0f;
|
|---|
| 52 | axvec[1] = 0.0f;
|
|---|
| 53 | axvec[2] = 0.0f;
|
|---|
| 54 | }
|
|---|
| 55 | }
|
|---|