1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaMapqk ( double rm, double dm, double pr, double pd,
|
---|
4 | double px, double rv, double amprms[21],
|
---|
5 | double *ra, double *da )
|
---|
6 | /*
|
---|
7 | ** - - - - - - - - -
|
---|
8 | ** s l a M a p q k
|
---|
9 | ** - - - - - - - - -
|
---|
10 | **
|
---|
11 | ** Quick mean to apparent place: transform a star RA,Dec from
|
---|
12 | ** mean place to geocentric apparent place, given the
|
---|
13 | ** star-independent parameters.
|
---|
14 | **
|
---|
15 | ** Use of this routine is appropriate when efficiency is important
|
---|
16 | ** and where many star positions, all referred to the same equator
|
---|
17 | ** and equinox, are to be transformed for one epoch. The
|
---|
18 | ** star-independent parameters can be obtained by calling the
|
---|
19 | ** slaMappa routine.
|
---|
20 | **
|
---|
21 | ** If the parallax and proper motions are zero the slaMapqkz
|
---|
22 | ** routine can be used instead.
|
---|
23 | **
|
---|
24 | ** The reference frames and timescales used are post IAU 1976.
|
---|
25 | **
|
---|
26 | ** Given:
|
---|
27 | ** rm,dm double mean RA,Dec (rad)
|
---|
28 | ** pr,pd double proper motions: RA,Dec changes per Julian year
|
---|
29 | ** px double parallax (arcsec)
|
---|
30 | ** rv double radial velocity (km/sec, +ve if receding)
|
---|
31 | **
|
---|
32 | ** amprms double[21] star-independent mean-to-apparent parameters:
|
---|
33 | **
|
---|
34 | ** (0) time interval for proper motion (Julian years)
|
---|
35 | ** (1-3) barycentric position of the Earth (AU)
|
---|
36 | ** (4-6) heliocentric direction of the Earth (unit vector)
|
---|
37 | ** (7) (grav rad Sun)*2/(Sun-Earth distance)
|
---|
38 | ** (8-10) barycentric Earth velocity in units of c
|
---|
39 | ** (11) sqrt(1-v**2) where v=modulus(abv)
|
---|
40 | ** (12-20) precession/nutation (3,3) matrix
|
---|
41 | **
|
---|
42 | ** Returned:
|
---|
43 | ** *ra,*da double apparent RA,Dec (rad)
|
---|
44 | **
|
---|
45 | ** References:
|
---|
46 | ** 1984 Astronomical Almanac, pp B39-B41.
|
---|
47 | ** (also Lederle & Schwan, Astron. Astrophys. 134, 1-6, 1984)
|
---|
48 | **
|
---|
49 | ** Notes:
|
---|
50 | **
|
---|
51 | ** 1) The vectors amprms(1-3) and amprms(4-6) are referred to
|
---|
52 | ** the mean equinox and equator of epoch eq.
|
---|
53 | **
|
---|
54 | ** 2) Strictly speaking, the routine is not valid for solar-system
|
---|
55 | ** sources, though the error will usually be extremely small.
|
---|
56 | ** However, to prevent gross errors in the case where the
|
---|
57 | ** position of the Sun is specified, the gravitational
|
---|
58 | ** deflection term is restrained within about 920 arcsec of the
|
---|
59 | ** centre of the Sun's disc. The term has a maximum value of
|
---|
60 | ** about 1.85 arcsec at this radius, and decreases to zero as
|
---|
61 | ** the centre of the disc is approached.
|
---|
62 | **
|
---|
63 | ** Called:
|
---|
64 | ** slaDcs2c spherical to Cartesian
|
---|
65 | ** slaDvdv dot product
|
---|
66 | ** slaDmxv matrix x vector
|
---|
67 | ** slaDcc2s Cartesian to spherical
|
---|
68 | ** slaDranrm normalize angle 0-2pi
|
---|
69 | **
|
---|
70 | ** Defined in slamac.h: DAS2R
|
---|
71 | **
|
---|
72 | ** Last revision: 15 January 2000
|
---|
73 | **
|
---|
74 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
75 | */
|
---|
76 |
|
---|
77 | #define VF 0.21094502 /* Km/s to AU/year */
|
---|
78 |
|
---|
79 | {
|
---|
80 | int i;
|
---|
81 | double pmt, gr2e, ab1, eb[3], ehn[3], abv[3],
|
---|
82 | q[3], pxr, w, em[3], p[3], pn[3], pde, pdep1,
|
---|
83 | p1[3], p1dv, p2[3], p3[3];
|
---|
84 |
|
---|
85 | /* Unpack scalar and vector parameters */
|
---|
86 | pmt = amprms[0];
|
---|
87 | gr2e = amprms[7];
|
---|
88 | ab1 = amprms[11];
|
---|
89 | for ( i = 0; i < 3; i++ )
|
---|
90 | {
|
---|
91 | eb[i] = amprms[i+1];
|
---|
92 | ehn[i] = amprms[i+4];
|
---|
93 | abv[i] = amprms[i+8];
|
---|
94 | }
|
---|
95 |
|
---|
96 | /* Spherical to x,y,z */
|
---|
97 | slaDcs2c ( rm, dm, q );
|
---|
98 |
|
---|
99 | /* Space motion (radians per year) */
|
---|
100 | pxr = px * DAS2R;
|
---|
101 | w = VF * rv * pxr;
|
---|
102 | em[0] = (-pr * q[1]) - ( pd * cos ( rm ) * sin ( dm ) ) + ( w * q[0] );
|
---|
103 | em[1] = ( pr * q[0]) - ( pd * sin ( rm ) * sin ( dm ) ) + ( w * q[1] );
|
---|
104 | em[2] = ( pd * cos ( dm ) ) + ( w * q[2] );
|
---|
105 |
|
---|
106 | /* Geocentric direction of star (normalized) */
|
---|
107 | for ( i = 0; i < 3; i++ ) {
|
---|
108 | p[i] = q[i] + ( pmt * em[i] ) - ( pxr * eb[i] );
|
---|
109 | }
|
---|
110 | slaDvn ( p, pn, &w );
|
---|
111 |
|
---|
112 | /* Light deflection (restrained within the Sun's disc) */
|
---|
113 | pde = slaDvdv ( pn, ehn );
|
---|
114 | pdep1 = 1.0 + pde;
|
---|
115 | w = gr2e / gmax ( pdep1, 1.0e-5 );
|
---|
116 | for ( i = 0; i < 3; i++ ) {
|
---|
117 | p1[i] = pn[i] + ( w * ( ehn[i] - pde * pn[i] ) );
|
---|
118 | }
|
---|
119 |
|
---|
120 | /* Aberration (normalization omitted) */
|
---|
121 | p1dv = slaDvdv ( p1, abv );
|
---|
122 | w = 1.0 + p1dv / ( ab1 + 1.0 );
|
---|
123 | for ( i = 0; i < 3; i++ ) {
|
---|
124 | p2[i] = ab1 * p1[i] + w * abv[i];
|
---|
125 | }
|
---|
126 |
|
---|
127 | /* Precession and nutation */
|
---|
128 | slaDmxv ( (double(*)[3]) &rms[12], p2, p3 );
|
---|
129 |
|
---|
130 | /* Geocentric apparent RA,dec */
|
---|
131 | slaDcc2s ( p3, ra, da );
|
---|
132 |
|
---|
133 | *ra = slaDranrm ( *ra );
|
---|
134 | }
|
---|