| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | void slaMapqkz ( double rm, double dm, double amprms[21],
|
|---|
| 4 | double *ra, double *da )
|
|---|
| 5 | /*
|
|---|
| 6 | ** - - - - - - - - - -
|
|---|
| 7 | ** s l a M a p q k z
|
|---|
| 8 | ** - - - - - - - - - -
|
|---|
| 9 | **
|
|---|
| 10 | ** Quick mean to apparent place: transform a star RA,dec from
|
|---|
| 11 | ** mean place to geocentric apparent place, given the
|
|---|
| 12 | ** star-independent parameters, and assuming zero parallax
|
|---|
| 13 | ** and proper motion.
|
|---|
| 14 | **
|
|---|
| 15 | ** Use of this routine is appropriate when efficiency is important
|
|---|
| 16 | ** and where many star positions, all with parallax and proper
|
|---|
| 17 | ** motion either zero or already allowed for, and all referred to
|
|---|
| 18 | ** the same equator and equinox, are to be transformed for one
|
|---|
| 19 | ** epoch. The star-independent parameters can be obtained by
|
|---|
| 20 | ** calling the slaMappa routine.
|
|---|
| 21 | **
|
|---|
| 22 | ** The corresponding routine for the case of non-zero parallax
|
|---|
| 23 | ** and proper motion is slaMapqk.
|
|---|
| 24 | **
|
|---|
| 25 | ** The reference frames and timescales used are post IAU 1976.
|
|---|
| 26 | **
|
|---|
| 27 | ** Given:
|
|---|
| 28 | ** rm,dm double mean RA,dec (rad)
|
|---|
| 29 | ** amprms double[21] star-independent mean-to-apparent parameters:
|
|---|
| 30 | **
|
|---|
| 31 | ** (0-3) not used
|
|---|
| 32 | ** (4-6) heliocentric direction of the Earth (unit vector)
|
|---|
| 33 | ** (7) (grav rad Sun)*2/(Sun-Earth distance)
|
|---|
| 34 | ** (8-10) abv: barycentric Earth velocity in units of c
|
|---|
| 35 | ** (11) sqrt(1-v**2) where v=modulus(abv)
|
|---|
| 36 | ** (12-20) precession/nutation (3,3) matrix
|
|---|
| 37 | **
|
|---|
| 38 | ** Returned:
|
|---|
| 39 | ** *ra,*da double apparent RA,dec (rad)
|
|---|
| 40 | **
|
|---|
| 41 | ** References:
|
|---|
| 42 | ** 1984 Astronomical Almanac, pp B39-B41.
|
|---|
| 43 | ** (also Lederle & Schwan, Astron. Astrophys. 134,
|
|---|
| 44 | ** 1-6, 1984)
|
|---|
| 45 | **
|
|---|
| 46 | ** Notes:
|
|---|
| 47 | **
|
|---|
| 48 | ** 1) The vectors amprms(1-3) and amprms(4-6) are referred to the
|
|---|
| 49 | ** mean equinox and equator of epoch eq.
|
|---|
| 50 | **
|
|---|
| 51 | ** 2) Strictly speaking, the routine is not valid for solar-system
|
|---|
| 52 | ** sources, though the error will usually be extremely small.
|
|---|
| 53 | ** However, to prevent gross errors in the case where the
|
|---|
| 54 | ** position of the Sun is specified, the gravitational
|
|---|
| 55 | ** deflection term is restrained within about 920 arcsec of the
|
|---|
| 56 | ** centre of the Sun's disc. The term has a maximum value of
|
|---|
| 57 | ** about 1.85 arcsec at this radius, and decreases to zero as
|
|---|
| 58 | ** the centre of the disc is approached.
|
|---|
| 59 | **
|
|---|
| 60 | ** Called:
|
|---|
| 61 | ** slaDcs2c spherical to Cartesian
|
|---|
| 62 | ** slaDvdv dot product
|
|---|
| 63 | ** slaDmxv matrix x vector
|
|---|
| 64 | ** slaDcc2s Cartesian to spherical
|
|---|
| 65 | ** slaDranrm normalize angle 0-2pi
|
|---|
| 66 | **
|
|---|
| 67 | ** Last revision: 17 August 1999
|
|---|
| 68 | **
|
|---|
| 69 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 70 | */
|
|---|
| 71 | {
|
|---|
| 72 | int i;
|
|---|
| 73 | double gr2e, ab1, ehn[3], abv[3], p[3], pde, pdep1,
|
|---|
| 74 | w, p1[3], p1dv, p1dvp1, p2[3], p3[3];
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 | /* Unpack scalar and vector parameters */
|
|---|
| 78 | gr2e = amprms[7];
|
|---|
| 79 | ab1 = amprms[11];
|
|---|
| 80 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 81 | ehn[i] = amprms[i+4];
|
|---|
| 82 | abv[i] = amprms[i+8];
|
|---|
| 83 | }
|
|---|
| 84 |
|
|---|
| 85 | /* Spherical to x,y,z */
|
|---|
| 86 | slaDcs2c ( rm, dm, p );
|
|---|
| 87 |
|
|---|
| 88 | /* Light deflection */
|
|---|
| 89 | pde = slaDvdv ( p, ehn );
|
|---|
| 90 | pdep1 = pde + 1.0;
|
|---|
| 91 | w = gr2e / gmax ( pdep1, 1e-5 );
|
|---|
| 92 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 93 | p1[i] = p[i] + w * ( ehn[i] - pde * p[i] );
|
|---|
| 94 | }
|
|---|
| 95 |
|
|---|
| 96 | /* Aberration */
|
|---|
| 97 | p1dv = slaDvdv ( p1, abv );
|
|---|
| 98 | p1dvp1 = p1dv + 1.0;
|
|---|
| 99 | w = 1.0 + p1dv / ( ab1 + 1.0 );
|
|---|
| 100 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 101 | p2[i] = ( ( ab1 * p1[i] ) + ( w * abv[i] ) ) / p1dvp1;
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 | /* Precession and nutation */
|
|---|
| 105 | slaDmxv ( (double(*)[3]) &rms[12], p2, p3 );
|
|---|
| 106 |
|
|---|
| 107 | /* Geocentric apparent RA,dec */
|
|---|
| 108 | slaDcc2s ( p3, ra, da );
|
|---|
| 109 | *ra = slaDranrm ( *ra );
|
|---|
| 110 | }
|
|---|