1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaOapqk ( char *type, double ob1, double ob2,
|
---|
4 | double aoprms[14], double *rap, double *dap )
|
---|
5 | /*
|
---|
6 | ** - - - - - - - - -
|
---|
7 | ** s l a O a p q k
|
---|
8 | ** - - - - - - - - -
|
---|
9 | **
|
---|
10 | ** Quick observed to apparent place.
|
---|
11 | **
|
---|
12 | ** Given:
|
---|
13 | ** type char type of coordinates - 'r', 'h' or 'a' (see below)
|
---|
14 | ** ob1 double observed az, HA or RA (radians; az is n=0,e=90)
|
---|
15 | ** ob2 double observed ZD or Dec (radians)
|
---|
16 | ** aoprms double[14] star-independent apparent-to-observed parameters:
|
---|
17 | **
|
---|
18 | ** (0) geodetic latitude (radians)
|
---|
19 | ** (1,2) sine and cosine of geodetic latitude
|
---|
20 | ** (3) magnitude of diurnal aberration vector
|
---|
21 | ** (4) height (hm)
|
---|
22 | ** (5) ambient temperature (t)
|
---|
23 | ** (6) pressure (p)
|
---|
24 | ** (7) relative humidity (rh)
|
---|
25 | ** (8) wavelength (wl)
|
---|
26 | ** (9) lapse rate (tlr)
|
---|
27 | ** (10,11) refraction constants a and b (radians)
|
---|
28 | ** (12) longitude + eqn of equinoxes + sidereal DUT (radians)
|
---|
29 | ** (13) local apparent sidereal time (radians)
|
---|
30 | **
|
---|
31 | ** Returned:
|
---|
32 | ** *rap double geocentric apparent right ascension
|
---|
33 | ** *dap double geocentric apparent declination
|
---|
34 | **
|
---|
35 | ** Notes:
|
---|
36 | **
|
---|
37 | ** 1) Only the first character of the type argument is significant.
|
---|
38 | ** 'R' or 'r' indicates that obs1 and obs2 are the observed right
|
---|
39 | ** ascension and declination; 'H' or 'h' indicates that they are
|
---|
40 | ** hour angle (west +ve) and declination; anything else ('A' or
|
---|
41 | ** 'a' is recommended) indicates that obs1 and obs2 are azimuth
|
---|
42 | ** (north zero, east is 90 deg) and zenith distance. (Zenith
|
---|
43 | ** distance is used rather than elevation in order to reflect the
|
---|
44 | ** fact that no allowance is made for depression of the horizon.)
|
---|
45 | **
|
---|
46 | ** 2) The accuracy of the result is limited by the corrections for
|
---|
47 | ** refraction. Providing the meteorological parameters are
|
---|
48 | ** known accurately and there are no gross local effects, the
|
---|
49 | ** predicted apparent RA,Dec should be within about 0.1 arcsec.
|
---|
50 | ** Even at a topocentric zenith distance of 90 degrees, the
|
---|
51 | ** accuracy in elevation should be better than 1 arcmin; useful
|
---|
52 | ** results are available for a further 3 degrees, beyond which
|
---|
53 | ** the slaRefro routine returns a fixed value of the refraction.
|
---|
54 | ** the complementary routines slaAop (or slaAopqk) and slaOap
|
---|
55 | ** (or slaOapqk) are self-consistent to better than 1 micro-
|
---|
56 | ** arcsecond all over the celestial sphere.
|
---|
57 | **
|
---|
58 | ** 3) It is advisable to take great care with units, as even
|
---|
59 | ** unlikely values of the input parameters are accepted and
|
---|
60 | ** processed in accordance with the models used.
|
---|
61 | **
|
---|
62 | ** 5) "Observed" az,el means the position that would be seen by a
|
---|
63 | ** perfect theodolite located at the observer. This is
|
---|
64 | ** related to the observed HA,Dec via the standard rotation, using
|
---|
65 | ** the geodetic latitude (corrected for polar motion), while the
|
---|
66 | ** observed HA and RA are related simply through the local
|
---|
67 | ** apparent ST. "Observed" RA,Dec or HA,Dec thus means the
|
---|
68 | ** position that would be seen by a perfect equatorial located
|
---|
69 | ** at the observer and with its polar axis aligned to the
|
---|
70 | ** Earth's axis of rotation (n.b. not to the refracted pole).
|
---|
71 | ** by removing from the observed place the effects of
|
---|
72 | ** atmospheric refraction and diurnal aberration, the
|
---|
73 | ** geocentric apparent RA,Dec is obtained.
|
---|
74 | **
|
---|
75 | ** 5) Frequently, mean rather than apparent RA,Dec will be required,
|
---|
76 | ** in which case further transformations will be necessary. The
|
---|
77 | ** slaAmp etc routines will convert the apparent RA,Dec produced
|
---|
78 | ** by the present routine into an "FK5" (J2000) mean place, by
|
---|
79 | ** allowing for the Sun's gravitational lens effect, annual
|
---|
80 | ** aberration, nutation and precession. Should "FK4" (1950)
|
---|
81 | ** coordinates be needed, the routines slaFk524 etc will also
|
---|
82 | ** need to be applied.
|
---|
83 | **
|
---|
84 | ** 6) To convert to apparent RA,Dec the coordinates read from a
|
---|
85 | ** real telescope, corrections would have to be applied for
|
---|
86 | ** encoder zero points, gear and encoder errors, tube flexure,
|
---|
87 | ** the position of the rotator axis and the pointing axis
|
---|
88 | ** relative to it, non-perpendicularity between the mounting
|
---|
89 | ** axes, and finally for the tilt of the azimuth or polar axis
|
---|
90 | ** of the mounting (with appropriate corrections for mount
|
---|
91 | ** flexures). Some telescopes would, of course, exhibit other
|
---|
92 | ** properties which would need to be accounted for at the
|
---|
93 | ** appropriate point in the sequence.
|
---|
94 | **
|
---|
95 | ** 7) The star-independent apparent-to-observed-place parameters
|
---|
96 | ** in aoprms may be computed by means of the slaAoppa routine.
|
---|
97 | ** If nothing has changed significantly except the time, the
|
---|
98 | ** slaAoppat routine may be used to perform the requisite
|
---|
99 | ** partial recomputation of aoprms.
|
---|
100 | **
|
---|
101 | ** 8) The azimuths etc used by the present routine are with respect
|
---|
102 | ** to the celestial pole. Corrections from the terrestrial pole
|
---|
103 | ** can be computed using slaPolmo.
|
---|
104 | **
|
---|
105 | ** Called: slaDcs2c, slaDcc2s, slaRefro, slaDranrm
|
---|
106 | **
|
---|
107 | ** Last revision: 3 February 2000
|
---|
108 | **
|
---|
109 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
110 | */
|
---|
111 | {
|
---|
112 |
|
---|
113 | /*
|
---|
114 | ** Breakpoint for fast/slow refraction algorithm:
|
---|
115 | ** ZD greater than arctan(4), (see slaRefco routine)
|
---|
116 | ** or vector z less than cosine(arctan(z)) = 1/sqrt(17)
|
---|
117 | */
|
---|
118 | static double zbreak = 0.242535625;
|
---|
119 |
|
---|
120 | char c;
|
---|
121 | double c1, c2, sphi, cphi, st, ce, xaeo, yaeo, zaeo, v[3],
|
---|
122 | xmhdo, ymhdo, zmhdo, az, sz, zdo, tz, dref, zdt,
|
---|
123 | xaet, yaet, zaet, xmhda, ymhda, zmhda, diurab, f, hma;
|
---|
124 |
|
---|
125 |
|
---|
126 | /* Coordinate type */
|
---|
127 | c = *type;
|
---|
128 |
|
---|
129 | /* Coordinates */
|
---|
130 | c1 = ob1;
|
---|
131 | c2 = ob2;
|
---|
132 |
|
---|
133 | /* Sin, cos of latitude */
|
---|
134 | sphi = aoprms[1];
|
---|
135 | cphi = aoprms[2];
|
---|
136 |
|
---|
137 | /* Local apparent sidereal time */
|
---|
138 | st = aoprms[13];
|
---|
139 |
|
---|
140 | /* Standardize coordinate type */
|
---|
141 | if ( c == 'r' || c == 'R' ) {
|
---|
142 | c = 'R';
|
---|
143 | } else if ( c == 'h' || c == 'H' ) {
|
---|
144 | c = 'H';
|
---|
145 | } else {
|
---|
146 | c = 'A';
|
---|
147 | }
|
---|
148 |
|
---|
149 | /* If az,ZD convert to Cartesian (S=0,E=90) */
|
---|
150 | if ( c == 'A' ) {
|
---|
151 | ce = sin ( c2 );
|
---|
152 | xaeo = - cos ( c1 ) * ce;
|
---|
153 | yaeo = sin ( c1 ) * ce;
|
---|
154 | zaeo = cos ( c2 );
|
---|
155 | } else {
|
---|
156 |
|
---|
157 | /* If RA,Dec convert to HA,Dec */
|
---|
158 | if ( c == 'R' ) {
|
---|
159 | c1 = st - c1;
|
---|
160 | }
|
---|
161 |
|
---|
162 | /* To Cartesian -HA,Dec */
|
---|
163 | slaDcs2c ( -c1, c2, v );
|
---|
164 | xmhdo = v[0];
|
---|
165 | ymhdo = v[1];
|
---|
166 | zmhdo = v[2];
|
---|
167 |
|
---|
168 | /* To Cartesian az,el (S=0,E=90) */
|
---|
169 | xaeo = sphi * xmhdo - cphi * zmhdo;
|
---|
170 | yaeo = ymhdo;
|
---|
171 | zaeo = cphi * xmhdo + sphi * zmhdo;
|
---|
172 | }
|
---|
173 |
|
---|
174 | /* Azimuth (S=0,E=90) */
|
---|
175 | //*TB* az = xaeo != 0.0 && yaeo != 0.0 ? atan2 ( yaeo, xaeo ) : 0.0;
|
---|
176 | az = atan2 ( yaeo, xaeo );
|
---|
177 |
|
---|
178 | /* Sine of observed ZD, and observed ZD */
|
---|
179 | sz = sqrt ( xaeo * xaeo + yaeo * yaeo );
|
---|
180 | zdo = atan2 ( sz, zaeo );
|
---|
181 |
|
---|
182 | /*
|
---|
183 | ** Refraction
|
---|
184 | ** ----------
|
---|
185 | */
|
---|
186 |
|
---|
187 | /* Large zenith distance? */
|
---|
188 | if ( zaeo >= zbreak ) {
|
---|
189 |
|
---|
190 | /* Fast algorithm using two constant model */
|
---|
191 | tz = sz / zaeo;
|
---|
192 | dref = ( aoprms[10] + aoprms[11] * tz * tz ) * tz;
|
---|
193 | } else {
|
---|
194 |
|
---|
195 | /* Rigorous algorithm for large ZD */
|
---|
196 | slaRefro ( zdo, aoprms[4], aoprms[5], aoprms[6], aoprms[7],
|
---|
197 | aoprms[8], aoprms[0], aoprms[9], 1e-8, &dref );
|
---|
198 | }
|
---|
199 | zdt = zdo + dref;
|
---|
200 |
|
---|
201 | /* To Cartesian az,ZD */
|
---|
202 | ce = sin ( zdt );
|
---|
203 | xaet = cos ( az ) * ce;
|
---|
204 | yaet = sin ( az ) * ce;
|
---|
205 | zaet = cos ( zdt );
|
---|
206 |
|
---|
207 | /* Cartesian az,ZD to Cartesian -HA,Dec */
|
---|
208 | xmhda = sphi * xaet + cphi * zaet;
|
---|
209 | ymhda = yaet;
|
---|
210 | zmhda = - cphi * xaet + sphi * zaet;
|
---|
211 |
|
---|
212 | /* Diurnal aberration */
|
---|
213 | diurab = -aoprms[3];
|
---|
214 | f = 1.0 - diurab * ymhda;
|
---|
215 | v[0] = f * xmhda;
|
---|
216 | v[1] = f * ( ymhda + diurab );
|
---|
217 | v[2] = f * zmhda;
|
---|
218 |
|
---|
219 | /* To spherical -HA,Dec */
|
---|
220 | slaDcc2s ( v, &hma, dap );
|
---|
221 |
|
---|
222 | /* Right ascension */
|
---|
223 | *rap = slaDranrm ( st + hma );
|
---|
224 | }
|
---|