| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaOapqk ( char *type, double ob1, double ob2, | 
|---|
| 4 | double aoprms[14], double *rap, double *dap ) | 
|---|
| 5 | /* | 
|---|
| 6 | **  - - - - - - - - - | 
|---|
| 7 | **   s l a O a p q k | 
|---|
| 8 | **  - - - - - - - - - | 
|---|
| 9 | ** | 
|---|
| 10 | **  Quick observed to apparent place. | 
|---|
| 11 | ** | 
|---|
| 12 | **  Given: | 
|---|
| 13 | **     type   char        type of coordinates - 'r', 'h' or 'a' (see below) | 
|---|
| 14 | **     ob1    double      observed az, HA or RA (radians; az is n=0,e=90) | 
|---|
| 15 | **     ob2    double      observed ZD or Dec (radians) | 
|---|
| 16 | **     aoprms double[14]  star-independent apparent-to-observed parameters: | 
|---|
| 17 | ** | 
|---|
| 18 | **       (0)      geodetic latitude (radians) | 
|---|
| 19 | **       (1,2)    sine and cosine of geodetic latitude | 
|---|
| 20 | **       (3)      magnitude of diurnal aberration vector | 
|---|
| 21 | **       (4)      height (hm) | 
|---|
| 22 | **       (5)      ambient temperature (t) | 
|---|
| 23 | **       (6)      pressure (p) | 
|---|
| 24 | **       (7)      relative humidity (rh) | 
|---|
| 25 | **       (8)      wavelength (wl) | 
|---|
| 26 | **       (9)      lapse rate (tlr) | 
|---|
| 27 | **       (10,11)  refraction constants a and b (radians) | 
|---|
| 28 | **       (12)     longitude + eqn of equinoxes + sidereal DUT (radians) | 
|---|
| 29 | **       (13)     local apparent sidereal time (radians) | 
|---|
| 30 | ** | 
|---|
| 31 | **  Returned: | 
|---|
| 32 | **     *rap    double      geocentric apparent right ascension | 
|---|
| 33 | **     *dap    double      geocentric apparent declination | 
|---|
| 34 | ** | 
|---|
| 35 | **  Notes: | 
|---|
| 36 | ** | 
|---|
| 37 | **   1)  Only the first character of the type argument is significant. | 
|---|
| 38 | **       'R' or 'r' indicates that obs1 and obs2 are the observed right | 
|---|
| 39 | **       ascension and declination;  'H' or 'h' indicates that they are | 
|---|
| 40 | **       hour angle (west +ve) and declination;  anything else ('A' or | 
|---|
| 41 | **       'a' is recommended) indicates that obs1 and obs2 are azimuth | 
|---|
| 42 | **       (north zero, east is 90 deg) and zenith distance.  (Zenith | 
|---|
| 43 | **       distance is used rather than elevation in order to reflect the | 
|---|
| 44 | **       fact that no allowance is made for depression of the horizon.) | 
|---|
| 45 | ** | 
|---|
| 46 | **   2)  The accuracy of the result is limited by the corrections for | 
|---|
| 47 | **       refraction.  Providing the meteorological parameters are | 
|---|
| 48 | **       known accurately and there are no gross local effects, the | 
|---|
| 49 | **       predicted apparent RA,Dec should be within about 0.1 arcsec. | 
|---|
| 50 | **       Even at a topocentric zenith distance of 90 degrees, the | 
|---|
| 51 | **       accuracy in elevation should be better than 1 arcmin;  useful | 
|---|
| 52 | **       results are available for a further 3 degrees, beyond which | 
|---|
| 53 | **       the slaRefro routine returns a fixed value of the refraction. | 
|---|
| 54 | **       the complementary routines slaAop (or slaAopqk) and slaOap | 
|---|
| 55 | **       (or slaOapqk) are self-consistent to better than 1 micro- | 
|---|
| 56 | **       arcsecond all over the celestial sphere. | 
|---|
| 57 | ** | 
|---|
| 58 | **   3)  It is advisable to take great care with units, as even | 
|---|
| 59 | **       unlikely values of the input parameters are accepted and | 
|---|
| 60 | **       processed in accordance with the models used. | 
|---|
| 61 | ** | 
|---|
| 62 | **   5)  "Observed" az,el means the position that would be seen by a | 
|---|
| 63 | **       perfect theodolite located at the observer.  This is | 
|---|
| 64 | **       related to the observed HA,Dec via the standard rotation, using | 
|---|
| 65 | **       the geodetic latitude (corrected for polar motion), while the | 
|---|
| 66 | **       observed HA and RA are related simply through the local | 
|---|
| 67 | **       apparent ST.  "Observed" RA,Dec or HA,Dec thus means the | 
|---|
| 68 | **       position that would be seen by a perfect equatorial located | 
|---|
| 69 | **       at the observer and with its polar axis aligned to the | 
|---|
| 70 | **       Earth's axis of rotation (n.b. not to the refracted pole). | 
|---|
| 71 | **       by removing from the observed place the effects of | 
|---|
| 72 | **       atmospheric refraction and diurnal aberration, the | 
|---|
| 73 | **       geocentric apparent RA,Dec is obtained. | 
|---|
| 74 | ** | 
|---|
| 75 | **   5)  Frequently, mean rather than apparent RA,Dec will be required, | 
|---|
| 76 | **       in which case further transformations will be necessary.  The | 
|---|
| 77 | **       slaAmp etc routines will convert the apparent RA,Dec produced | 
|---|
| 78 | **       by the present routine into an "FK5" (J2000) mean place, by | 
|---|
| 79 | **       allowing for the Sun's gravitational lens effect, annual | 
|---|
| 80 | **       aberration, nutation and precession.  Should "FK4" (1950) | 
|---|
| 81 | **       coordinates be needed, the routines slaFk524 etc will also | 
|---|
| 82 | **       need to be applied. | 
|---|
| 83 | ** | 
|---|
| 84 | **   6)  To convert to apparent RA,Dec the coordinates read from a | 
|---|
| 85 | **       real telescope, corrections would have to be applied for | 
|---|
| 86 | **       encoder zero points, gear and encoder errors, tube flexure, | 
|---|
| 87 | **       the position of the rotator axis and the pointing axis | 
|---|
| 88 | **       relative to it, non-perpendicularity between the mounting | 
|---|
| 89 | **       axes, and finally for the tilt of the azimuth or polar axis | 
|---|
| 90 | **       of the mounting (with appropriate corrections for mount | 
|---|
| 91 | **       flexures).  Some telescopes would, of course, exhibit other | 
|---|
| 92 | **       properties which would need to be accounted for at the | 
|---|
| 93 | **       appropriate point in the sequence. | 
|---|
| 94 | ** | 
|---|
| 95 | **   7)  The star-independent apparent-to-observed-place parameters | 
|---|
| 96 | **       in aoprms may be computed by means of the slaAoppa routine. | 
|---|
| 97 | **       If nothing has changed significantly except the time, the | 
|---|
| 98 | **       slaAoppat routine may be used to perform the requisite | 
|---|
| 99 | **       partial recomputation of aoprms. | 
|---|
| 100 | ** | 
|---|
| 101 | **   8)  The azimuths etc used by the present routine are with respect | 
|---|
| 102 | **       to the celestial pole.  Corrections from the terrestrial pole | 
|---|
| 103 | **       can be computed using slaPolmo. | 
|---|
| 104 | ** | 
|---|
| 105 | **  Called:  slaDcs2c, slaDcc2s, slaRefro, slaDranrm | 
|---|
| 106 | ** | 
|---|
| 107 | **  Last revision:   3 February 2000 | 
|---|
| 108 | ** | 
|---|
| 109 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 110 | */ | 
|---|
| 111 | { | 
|---|
| 112 |  | 
|---|
| 113 | /* | 
|---|
| 114 | ** Breakpoint for fast/slow refraction algorithm: | 
|---|
| 115 | ** ZD greater than arctan(4), (see slaRefco routine) | 
|---|
| 116 | ** or vector z less than cosine(arctan(z)) = 1/sqrt(17) | 
|---|
| 117 | */ | 
|---|
| 118 | static double zbreak = 0.242535625; | 
|---|
| 119 |  | 
|---|
| 120 | char c; | 
|---|
| 121 | double c1, c2, sphi, cphi, st, ce, xaeo, yaeo, zaeo, v[3], | 
|---|
| 122 | xmhdo, ymhdo, zmhdo, az, sz, zdo, tz, dref, zdt, | 
|---|
| 123 | xaet, yaet, zaet, xmhda, ymhda, zmhda, diurab, f, hma; | 
|---|
| 124 |  | 
|---|
| 125 |  | 
|---|
| 126 | /* Coordinate type */ | 
|---|
| 127 | c = *type; | 
|---|
| 128 |  | 
|---|
| 129 | /* Coordinates */ | 
|---|
| 130 | c1 = ob1; | 
|---|
| 131 | c2 = ob2; | 
|---|
| 132 |  | 
|---|
| 133 | /* Sin, cos of latitude */ | 
|---|
| 134 | sphi = aoprms[1]; | 
|---|
| 135 | cphi = aoprms[2]; | 
|---|
| 136 |  | 
|---|
| 137 | /* Local apparent sidereal time */ | 
|---|
| 138 | st = aoprms[13]; | 
|---|
| 139 |  | 
|---|
| 140 | /* Standardize coordinate type */ | 
|---|
| 141 | if ( c == 'r' || c == 'R' ) { | 
|---|
| 142 | c = 'R'; | 
|---|
| 143 | } else if ( c == 'h' || c  == 'H' ) { | 
|---|
| 144 | c = 'H'; | 
|---|
| 145 | } else { | 
|---|
| 146 | c = 'A'; | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | /* If az,ZD convert to Cartesian (S=0,E=90) */ | 
|---|
| 150 | if ( c == 'A' ) { | 
|---|
| 151 | ce = sin ( c2 ); | 
|---|
| 152 | xaeo = - cos ( c1 ) * ce; | 
|---|
| 153 | yaeo = sin ( c1 ) * ce; | 
|---|
| 154 | zaeo = cos ( c2 ); | 
|---|
| 155 | } else { | 
|---|
| 156 |  | 
|---|
| 157 | /* If RA,Dec convert to HA,Dec */ | 
|---|
| 158 | if ( c == 'R' ) { | 
|---|
| 159 | c1 = st - c1; | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | /* To Cartesian -HA,Dec */ | 
|---|
| 163 | slaDcs2c ( -c1, c2, v ); | 
|---|
| 164 | xmhdo = v[0]; | 
|---|
| 165 | ymhdo = v[1]; | 
|---|
| 166 | zmhdo = v[2]; | 
|---|
| 167 |  | 
|---|
| 168 | /* To Cartesian az,el (S=0,E=90) */ | 
|---|
| 169 | xaeo = sphi * xmhdo - cphi * zmhdo; | 
|---|
| 170 | yaeo = ymhdo; | 
|---|
| 171 | zaeo = cphi * xmhdo + sphi * zmhdo; | 
|---|
| 172 | } | 
|---|
| 173 |  | 
|---|
| 174 | /* Azimuth (S=0,E=90) */ | 
|---|
| 175 | //*TB* az = xaeo != 0.0 && yaeo != 0.0 ? atan2 ( yaeo, xaeo ) : 0.0; | 
|---|
| 176 | az = atan2 ( yaeo, xaeo ); | 
|---|
| 177 |  | 
|---|
| 178 | /* Sine of observed ZD, and observed ZD */ | 
|---|
| 179 | sz = sqrt ( xaeo * xaeo + yaeo * yaeo ); | 
|---|
| 180 | zdo = atan2 ( sz, zaeo ); | 
|---|
| 181 |  | 
|---|
| 182 | /* | 
|---|
| 183 | ** Refraction | 
|---|
| 184 | ** ---------- | 
|---|
| 185 | */ | 
|---|
| 186 |  | 
|---|
| 187 | /* Large zenith distance? */ | 
|---|
| 188 | if ( zaeo >= zbreak ) { | 
|---|
| 189 |  | 
|---|
| 190 | /* Fast algorithm using two constant model */ | 
|---|
| 191 | tz = sz / zaeo; | 
|---|
| 192 | dref = ( aoprms[10] + aoprms[11] * tz * tz ) * tz; | 
|---|
| 193 | } else { | 
|---|
| 194 |  | 
|---|
| 195 | /* Rigorous algorithm for large ZD */ | 
|---|
| 196 | slaRefro ( zdo, aoprms[4], aoprms[5], aoprms[6], aoprms[7], | 
|---|
| 197 | aoprms[8], aoprms[0], aoprms[9], 1e-8, &dref ); | 
|---|
| 198 | } | 
|---|
| 199 | zdt = zdo + dref; | 
|---|
| 200 |  | 
|---|
| 201 | /* To Cartesian az,ZD */ | 
|---|
| 202 | ce = sin ( zdt ); | 
|---|
| 203 | xaet = cos ( az ) * ce; | 
|---|
| 204 | yaet = sin ( az ) * ce; | 
|---|
| 205 | zaet = cos ( zdt ); | 
|---|
| 206 |  | 
|---|
| 207 | /* Cartesian az,ZD to Cartesian -HA,Dec */ | 
|---|
| 208 | xmhda = sphi * xaet + cphi * zaet; | 
|---|
| 209 | ymhda = yaet; | 
|---|
| 210 | zmhda = - cphi * xaet + sphi * zaet; | 
|---|
| 211 |  | 
|---|
| 212 | /* Diurnal aberration */ | 
|---|
| 213 | diurab = -aoprms[3]; | 
|---|
| 214 | f = 1.0 - diurab * ymhda; | 
|---|
| 215 | v[0] = f * xmhda; | 
|---|
| 216 | v[1] = f * ( ymhda + diurab ); | 
|---|
| 217 | v[2] = f * zmhda; | 
|---|
| 218 |  | 
|---|
| 219 | /* To spherical -HA,Dec */ | 
|---|
| 220 | slaDcc2s ( v, &hma, dap ); | 
|---|
| 221 |  | 
|---|
| 222 | /* Right ascension */ | 
|---|
| 223 | *rap = slaDranrm ( st + hma ); | 
|---|
| 224 | } | 
|---|