1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaPermut ( int n, int istate[], int iorder[], int* j )
|
---|
4 | /*
|
---|
5 | ** - - - - - - - - - -
|
---|
6 | ** s l a P e r m u t
|
---|
7 | ** - - - - - - - - - -
|
---|
8 | **
|
---|
9 | ** Generate the next permutation of a specified number of items.
|
---|
10 | **
|
---|
11 | ** Given:
|
---|
12 | ** n int number of items: there will be n! permutations
|
---|
13 | **
|
---|
14 | ** Given and Returned:
|
---|
15 | ** istate int[n] state, istate[0]=-1 to initialize
|
---|
16 | **
|
---|
17 | ** Returned:
|
---|
18 | ** istate int[n] state, updated ready for next time
|
---|
19 | ** iorder int[n) next permutation of numbers 1,2,...,n
|
---|
20 | ** *j int status: -1 = illegal n (zero or less is illegal)
|
---|
21 | ** 0 = OK
|
---|
22 | ** +1 = no more permutations available
|
---|
23 | **
|
---|
24 | ** Notes:
|
---|
25 | **
|
---|
26 | ** 1) This routine returns, in the iorder array, the integers 1 to n
|
---|
27 | ** inclusive, in an order that depends on the current contents of
|
---|
28 | ** the istate array. Before calling the routine for the first
|
---|
29 | ** time, the caller must set the first element of the istate array
|
---|
30 | ** to -1 (any negative number will do) to cause the istate array
|
---|
31 | ** to be fully initialized.
|
---|
32 | **
|
---|
33 | ** 2) The first permutation to be generated is:
|
---|
34 | **
|
---|
35 | ** iorder[0]=n, iorder[1]=n-1, ..., iorder[n-1]=1
|
---|
36 | **
|
---|
37 | ** This is also the permutation returned for the "finished"
|
---|
38 | ** (j=1) case.
|
---|
39 | **
|
---|
40 | ** The final permutation to be generated is:
|
---|
41 | **
|
---|
42 | ** iorder[0]=1, iorder[1]=2, ..., iorder[n-1]=n
|
---|
43 | **
|
---|
44 | ** 3) If the "finished" (j=1) status is ignored, the routine continues
|
---|
45 | ** to deliver permutations, the pattern repeating every n! calls.
|
---|
46 | **
|
---|
47 | ** Last revision: 14 July 1999
|
---|
48 | **
|
---|
49 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
50 | */
|
---|
51 | {
|
---|
52 | int i, ip1, islot, iskip;
|
---|
53 |
|
---|
54 |
|
---|
55 | /* ------------- */
|
---|
56 | /* Preliminaries */
|
---|
57 | /* ------------- */
|
---|
58 |
|
---|
59 | /* Validate, and set status. */
|
---|
60 | if ( n < 1 ) {
|
---|
61 | *j = -1;
|
---|
62 | return;
|
---|
63 | } else {
|
---|
64 | *j = 0;
|
---|
65 | }
|
---|
66 |
|
---|
67 | /* If just starting, initialize state array */
|
---|
68 | if ( istate[0] < 0 ) {
|
---|
69 | istate[0] = -1;
|
---|
70 | for ( i = 1; i < n; i++ ) {
|
---|
71 | istate[i] = 0;
|
---|
72 | }
|
---|
73 | }
|
---|
74 |
|
---|
75 | /* -------------------------- */
|
---|
76 | /* Increment the state number */
|
---|
77 | /* -------------------------- */
|
---|
78 |
|
---|
79 | /* The state number, maintained in the istate array, is a mixed-radix */
|
---|
80 | /* number with n! states. The least significant digit, with a radix of */
|
---|
81 | /* 1, is in istate[0]. The next digit, in istate[1], has a radix of 2, */
|
---|
82 | /* and so on. */
|
---|
83 |
|
---|
84 | /* Increment the least-significant digit of the state number. */
|
---|
85 | istate[0]++;
|
---|
86 |
|
---|
87 | /* Digit by digit starting with the least significant. */
|
---|
88 | for ( i = 0; i < n; i++ ) {
|
---|
89 | ip1 = i + 1;
|
---|
90 |
|
---|
91 | /* Carry? */
|
---|
92 | if ( istate[i] >= ip1 ) {
|
---|
93 |
|
---|
94 | /* Yes: reset the current digit. */
|
---|
95 | istate[i] = 0;
|
---|
96 |
|
---|
97 | /* Overflow? */
|
---|
98 | if ( ip1 >= n ) {
|
---|
99 |
|
---|
100 | /* Yes: there are no more permutations. */
|
---|
101 | *j = 1;
|
---|
102 |
|
---|
103 | } else {
|
---|
104 |
|
---|
105 | /* No: carry. */
|
---|
106 | istate[ip1]++;
|
---|
107 | }
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | /* ------------------------------------------------------------------- */
|
---|
112 | /* Translate the state number into the corresponding permutation order */
|
---|
113 | /* ------------------------------------------------------------------- */
|
---|
114 |
|
---|
115 | /* Initialize the order array. All but one element will be overwritten. */
|
---|
116 | for ( i = 0; i < n; i++ ) {
|
---|
117 | iorder[i] = 1;
|
---|
118 | }
|
---|
119 |
|
---|
120 | /* Look at each state number digit, starting with the most significant. */
|
---|
121 | for ( i = n-1; i > 0; i-- ) {
|
---|
122 |
|
---|
123 | /* Initialize the position where the new number will go. */
|
---|
124 | islot = -1;
|
---|
125 |
|
---|
126 | /* The state number digit says which unfilled slot is to be used. */
|
---|
127 | for ( iskip = 0; iskip <= istate[i]; iskip++ ) {
|
---|
128 |
|
---|
129 | /* Increment the slot number until an unused slot is found. */
|
---|
130 | islot++;
|
---|
131 | while ( iorder[islot] > 1 ) {
|
---|
132 | islot++;
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | /* Store the number in the permutation order array. */
|
---|
137 | iorder[islot] = i + 1;
|
---|
138 | }
|
---|
139 | }
|
---|