| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaPertue ( double date, double u[], int *jstat ) | 
|---|
| 4 | /* | 
|---|
| 5 | **  - - - - - - - - - - | 
|---|
| 6 | **   s l a P e r t u e | 
|---|
| 7 | **  - - - - - - - - - - | 
|---|
| 8 | ** | 
|---|
| 9 | **  Update the universal elements of an asteroid or comet by applying | 
|---|
| 10 | **  planetary perturbations. | 
|---|
| 11 | ** | 
|---|
| 12 | **  Given: | 
|---|
| 13 | **     date    double     final epoch (TT MJD) for the updated elements | 
|---|
| 14 | ** | 
|---|
| 15 | **  Given and returned: | 
|---|
| 16 | ** | 
|---|
| 17 | **     u       double[13] universal orbital elements (Note 1) | 
|---|
| 18 | ** | 
|---|
| 19 | **                    [0] combined mass (M+m) | 
|---|
| 20 | **                    [1] total energy of the orbit (alpha) | 
|---|
| 21 | **                    [2] reference (osculating) epoch (t0) | 
|---|
| 22 | **                  [3-5] position at reference epoch (r0) | 
|---|
| 23 | **                  [6-8] velocity at reference epoch (v0) | 
|---|
| 24 | **                    [9] heliocentric distance at reference epoch | 
|---|
| 25 | **                   [10] r0.v0 | 
|---|
| 26 | **                   [11] date (t) | 
|---|
| 27 | **                   [12] universal eccentric anomaly (psi) of date, approx | 
|---|
| 28 | ** | 
|---|
| 29 | **  Returned: | 
|---|
| 30 | **     jstat   int*       status: | 
|---|
| 31 | **                          +102 = warning, distant epoch | 
|---|
| 32 | **                          +101 = warning, large timespan ( > 100 years) | 
|---|
| 33 | **                      +1 to +8 = coincident with major planet (Note 5) | 
|---|
| 34 | **                             0 = OK | 
|---|
| 35 | **                            -1 = numerical error | 
|---|
| 36 | ** | 
|---|
| 37 | **  Called:  slaPlanet, slaUe2pv, slaPv2ue | 
|---|
| 38 | ** | 
|---|
| 39 | **  Notes: | 
|---|
| 40 | ** | 
|---|
| 41 | **  1  The "universal" elements are those which define the orbit for the | 
|---|
| 42 | **     purposes of the method of universal variables (see reference 2). | 
|---|
| 43 | **     They consist of the combined mass of the two bodies, an epoch, | 
|---|
| 44 | **     and the position and velocity vectors (arbitrary reference frame) | 
|---|
| 45 | **     at that epoch.  The parameter set used here includes also various | 
|---|
| 46 | **     quantities that can, in fact, be derived from the other | 
|---|
| 47 | **     information.  This approach is taken to avoiding unnecessary | 
|---|
| 48 | **     computation and loss of accuracy.  The supplementary quantities | 
|---|
| 49 | **     are (i) alpha, which is proportional to the total energy of the | 
|---|
| 50 | **     orbit, (ii) the heliocentric distance at epoch, (iii) the | 
|---|
| 51 | **     outwards component of the velocity at the given epoch, (iv) an | 
|---|
| 52 | **     estimate of psi, the "universal eccentric anomaly" at a given | 
|---|
| 53 | **     date and (v) that date. | 
|---|
| 54 | ** | 
|---|
| 55 | **  2  The universal elements are with respect to the J2000 equator and | 
|---|
| 56 | **     equinox. | 
|---|
| 57 | ** | 
|---|
| 58 | **  3  The epochs date, u[2] and u[11] are all Modified Julian Dates | 
|---|
| 59 | **     (JD-2400000.5). | 
|---|
| 60 | ** | 
|---|
| 61 | **  4  The algorithm is a simplified form of Encke's method.  It takes as | 
|---|
| 62 | **     a basis the unperturbed motion of the body, and numerically | 
|---|
| 63 | **     integrates the perturbing accelerations from the major planets. | 
|---|
| 64 | **     The expression used is essentially Sterne's 6.7-2 (reference 1). | 
|---|
| 65 | **     Everhart and Pitkin (reference 2) suggest rectifying the orbit at | 
|---|
| 66 | **     each integration step by propagating the new perturbed position | 
|---|
| 67 | **     and velocity as the new universal variables.  In the present | 
|---|
| 68 | **     routine the orbit is rectified less frequently than this, in order | 
|---|
| 69 | **     to gain a slight speed advantage.  However, the rectification is | 
|---|
| 70 | **     done directly in terms of position and velocity, as suggested by | 
|---|
| 71 | **     Everhart and Pitkin, bypassing the use of conventional orbital | 
|---|
| 72 | **     elements. | 
|---|
| 73 | ** | 
|---|
| 74 | **     The f(q) part of the full Encke method is not used.  The purpose | 
|---|
| 75 | **     of this part is to avoid subtracting two nearly equal quantities | 
|---|
| 76 | **     when calculating the "indirect member", which takes account of the | 
|---|
| 77 | **     small change in the Sun's attraction due to the slightly displaced | 
|---|
| 78 | **     position of the perturbed body.  A simpler, direct calculation in | 
|---|
| 79 | **     double precision proves to be faster and not significantly less | 
|---|
| 80 | **     accurate. | 
|---|
| 81 | ** | 
|---|
| 82 | **     Apart from employing a variable timestep, and occasionally | 
|---|
| 83 | **     "rectifying the orbit" to keep the indirect member small, the | 
|---|
| 84 | **     integration is done in a fairly straightforward way.  The | 
|---|
| 85 | **     acceleration estimated for the middle of the timestep is assumed | 
|---|
| 86 | **     to apply throughout that timestep;  it is also used in the | 
|---|
| 87 | **     extrapolation of the perturbations to the middle of the next | 
|---|
| 88 | **     timestep, to predict the new disturbed position.  There is no | 
|---|
| 89 | **     iteration within a timestep. | 
|---|
| 90 | ** | 
|---|
| 91 | **     Measures are taken to reach a compromise between execution time | 
|---|
| 92 | **     and accuracy.  The starting-point is the goal of achieving | 
|---|
| 93 | **     arcsecond accuracy for ordinary minor planets over a ten-year | 
|---|
| 94 | **     timespan.  This goal dictates how large the timesteps can be, | 
|---|
| 95 | **     which in turn dictates how frequently the unperturbed motion has | 
|---|
| 96 | **     to be recalculated from the osculating elements. | 
|---|
| 97 | ** | 
|---|
| 98 | **     Within predetermined limits, the timestep for the numerical | 
|---|
| 99 | **     integration is varied in length in inverse proportion to the | 
|---|
| 100 | **     magnitude of the net acceleration on the body from the major | 
|---|
| 101 | **     planets. | 
|---|
| 102 | ** | 
|---|
| 103 | **     The numerical integration requires estimates of the major-planet | 
|---|
| 104 | **     motions.  Approximate positions for the major planets (Pluto | 
|---|
| 105 | **     alone is omitted) are obtained from the routine slaPlanet.  Two | 
|---|
| 106 | **     levels of interpolation are used, to enhance speed without | 
|---|
| 107 | **     significantly degrading accuracy.  At a low frequency, the routine | 
|---|
| 108 | **     slaPlanet is called to generate updated position+velocity "state | 
|---|
| 109 | **     vectors".  The only task remaining to be carried out at the full | 
|---|
| 110 | **     frequency (i.e. at each integration step) is to use the state | 
|---|
| 111 | **     vectors to extrapolate the planetary positions.  In place of a | 
|---|
| 112 | **     strictly linear extrapolation, some allowance is made for the | 
|---|
| 113 | **     curvature of the orbit by scaling back the radius vector as the | 
|---|
| 114 | **     linear extrapolation goes off at a tangent. | 
|---|
| 115 | ** | 
|---|
| 116 | **     Various other approximations are made.  For example, perturbations | 
|---|
| 117 | **     by Pluto and the minor planets are neglected, relativistic effects | 
|---|
| 118 | **     are not taken into account and the Earth-Moon system is treated as | 
|---|
| 119 | **     a single body. | 
|---|
| 120 | ** | 
|---|
| 121 | **     In the interests of simplicity, the background calculations for | 
|---|
| 122 | **     the major planets are carried out en masse.  The mean elements and | 
|---|
| 123 | **     state vectors for all the planets are refreshed at the same time, | 
|---|
| 124 | **     without regard for orbit curvature, mass or proximity. | 
|---|
| 125 | ** | 
|---|
| 126 | **  5  This routine is not intended to be used for major planets. | 
|---|
| 127 | **     However, if major-planet elements are supplied, sensible results | 
|---|
| 128 | **     will, in fact, be produced.  This happens because the routine | 
|---|
| 129 | **     checks the separation between the body and each of the planets and | 
|---|
| 130 | **     interprets a suspiciously small value (0.001 AU) as an attempt to | 
|---|
| 131 | **     apply the routine to the planet concerned.  If this condition is | 
|---|
| 132 | **     detected, the contribution from that planet is ignored, and the | 
|---|
| 133 | **     status is set to the planet number (Mercury=1,...,Neptune=8) as a | 
|---|
| 134 | **     warning. | 
|---|
| 135 | ** | 
|---|
| 136 | **  References: | 
|---|
| 137 | ** | 
|---|
| 138 | **     1  Sterne, Theodore E., "An Introduction to Celestial Mechanics", | 
|---|
| 139 | **        Interscience Publishers Inc., 1960.  Section 6.7, p199. | 
|---|
| 140 | ** | 
|---|
| 141 | **     2  Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983. | 
|---|
| 142 | ** | 
|---|
| 143 | **  Last revision:   18 March 1999 | 
|---|
| 144 | ** | 
|---|
| 145 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 146 | */ | 
|---|
| 147 |  | 
|---|
| 148 | /* Coefficient relating timestep to perturbing force */ | 
|---|
| 149 | #define TSC 1e-4 | 
|---|
| 150 |  | 
|---|
| 151 | /* Minimum and maximum timestep (days) */ | 
|---|
| 152 | #define TSMIN 0.01 | 
|---|
| 153 | #define TSMAX 10.0 | 
|---|
| 154 |  | 
|---|
| 155 | /* Age limit for major-planet state vector (days) */ | 
|---|
| 156 | #define AGEPMO 5.0 | 
|---|
| 157 |  | 
|---|
| 158 | /* Age limit for major-planet mean elements (days) */ | 
|---|
| 159 | #define AGEPEL 50.0 | 
|---|
| 160 |  | 
|---|
| 161 | /* Margin for error when deciding whether to renew the planetary data */ | 
|---|
| 162 | #define TINY 1e-6 | 
|---|
| 163 |  | 
|---|
| 164 | /* Age limit for the body's osculating elements (before rectification) */ | 
|---|
| 165 | #define AGEBEL 100.0 | 
|---|
| 166 |  | 
|---|
| 167 | /* Gaussian gravitational constant (exact) and square */ | 
|---|
| 168 | #define GCON 0.01720209895 | 
|---|
| 169 | #define GCON2 (GCON*GCON) | 
|---|
| 170 |  | 
|---|
| 171 | { | 
|---|
| 172 |  | 
|---|
| 173 | /* The final epoch */ | 
|---|
| 174 | double tfinal; | 
|---|
| 175 |  | 
|---|
| 176 | /* The body's current universal elements */ | 
|---|
| 177 | double ul[13]; | 
|---|
| 178 |  | 
|---|
| 179 | /* Current reference epoch */ | 
|---|
| 180 | double t0; | 
|---|
| 181 |  | 
|---|
| 182 | /* Timespan from latest orbit rectification to final epoch (days) */ | 
|---|
| 183 | double tspan; | 
|---|
| 184 |  | 
|---|
| 185 | /* Time left to go before integration is complete */ | 
|---|
| 186 | double tleft; | 
|---|
| 187 |  | 
|---|
| 188 | /* Time direction flag: +1=forwards, -1=backwards */ | 
|---|
| 189 | double fb; | 
|---|
| 190 |  | 
|---|
| 191 | /* First-time flag */ | 
|---|
| 192 | int first; | 
|---|
| 193 |  | 
|---|
| 194 | /* The current perturbations */ | 
|---|
| 195 | double rtn,      /* Epoch (days relative to current reference epoch) */ | 
|---|
| 196 | perp[3],  /* Position (AU) */ | 
|---|
| 197 | perv[3],  /* Velocity (AU/d) */ | 
|---|
| 198 | pera[3];  /* Acceleration (AU/d/d) */ | 
|---|
| 199 |  | 
|---|
| 200 | /* Length of current timestep (days), and half that */ | 
|---|
| 201 | double ts, hts; | 
|---|
| 202 |  | 
|---|
| 203 | /* Epoch of middle of timestep */ | 
|---|
| 204 | double t; | 
|---|
| 205 |  | 
|---|
| 206 | /* Epoch of planetary mean elements */ | 
|---|
| 207 | double tpel; | 
|---|
| 208 |  | 
|---|
| 209 | /* Planet number (1=Mercury, 2=Venus, 3=EMB...8=Neptune) */ | 
|---|
| 210 | int np; | 
|---|
| 211 |  | 
|---|
| 212 | /* Planetary universal orbital elements */ | 
|---|
| 213 | double up[8][13]; | 
|---|
| 214 |  | 
|---|
| 215 | /* Epoch of planetary state vectors */ | 
|---|
| 216 | double tpmo; | 
|---|
| 217 |  | 
|---|
| 218 | /* State vectors for the major planets (AU,AU/s) */ | 
|---|
| 219 | double pvin[8][6]; | 
|---|
| 220 |  | 
|---|
| 221 | /* Correction terms for extrapolated major planet vectors */ | 
|---|
| 222 | double r2x3[8], /* Sun-to-planet distances squared multiplied by 3 */ | 
|---|
| 223 | gc[8],   /* Sunward acceleration terms, G/2R^3 */ | 
|---|
| 224 | fc,      /* Tangential-to-circular correction factor */ | 
|---|
| 225 | fg;      /* Radial correction factor due to Sunwards acceleration */ | 
|---|
| 226 |  | 
|---|
| 227 | /* The body's unperturbed and perturbed state vectors (AU,AU/s) */ | 
|---|
| 228 | double pv0[6], pv[6]; | 
|---|
| 229 |  | 
|---|
| 230 | /* The body's perturbed and unperturbed heliocentric distances (AU) cubed */ | 
|---|
| 231 | double r03, r3; | 
|---|
| 232 |  | 
|---|
| 233 | /* The perturbating accelerations, indirect and direct */ | 
|---|
| 234 | double fi[3], fd[3]; | 
|---|
| 235 |  | 
|---|
| 236 | /* Sun-to-planet vector, and distance cubed */ | 
|---|
| 237 | double rho[3], rho3; | 
|---|
| 238 |  | 
|---|
| 239 | /* Body-to-planet vector, and distance cubed */ | 
|---|
| 240 | double delta[3], delta3; | 
|---|
| 241 |  | 
|---|
| 242 | /* Miscellaneous */ | 
|---|
| 243 | int i, j, npm1; | 
|---|
| 244 | double r2, w, dt, dt2, ft; | 
|---|
| 245 |  | 
|---|
| 246 | /* Planetary inverse masses, Mercury through Neptune */ | 
|---|
| 247 | static double amas[] = { | 
|---|
| 248 | 6023600.0, | 
|---|
| 249 | 408523.5, | 
|---|
| 250 | 328900.5, | 
|---|
| 251 | 3098710.0, | 
|---|
| 252 | 1047.355, | 
|---|
| 253 | 3498.5, | 
|---|
| 254 | 22869.0, | 
|---|
| 255 | 19314.0 | 
|---|
| 256 | }; | 
|---|
| 257 |  | 
|---|
| 258 |  | 
|---|
| 259 |  | 
|---|
| 260 | /* Preset the status to OK. */ | 
|---|
| 261 | *jstat = 0; | 
|---|
| 262 |  | 
|---|
| 263 | /* Copy the final epoch. */ | 
|---|
| 264 | tfinal = date; | 
|---|
| 265 |  | 
|---|
| 266 | /* Copy the elements (which will be periodically updated). */ | 
|---|
| 267 | for ( i = 0; i < 13; i++ ) { | 
|---|
| 268 | ul[i] = u[i]; | 
|---|
| 269 | } | 
|---|
| 270 |  | 
|---|
| 271 | /* Initialize the working reference epoch. */ | 
|---|
| 272 | t0 = ul[2]; | 
|---|
| 273 |  | 
|---|
| 274 | /* Total timespan (days) and hence time left. */ | 
|---|
| 275 | tspan = tfinal - t0; | 
|---|
| 276 | tleft = tspan; | 
|---|
| 277 |  | 
|---|
| 278 | /* Warn if excessive. */ | 
|---|
| 279 | if ( fabs ( tspan ) > 36525.0 ) *jstat = 101; | 
|---|
| 280 |  | 
|---|
| 281 | /* Time direction: +1 for forwards, -1 for backwards. */ | 
|---|
| 282 | fb = dsign ( 1.0, tspan ); | 
|---|
| 283 |  | 
|---|
| 284 | /* Initialize relative epoch for start of current timestep. */ | 
|---|
| 285 | rtn = 0.0; | 
|---|
| 286 |  | 
|---|
| 287 | /* Reset the perturbations (position, velocity, acceleration). */ | 
|---|
| 288 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 289 | perp[i] = 0.0; | 
|---|
| 290 | perv[i] = 0.0; | 
|---|
| 291 | pera[i] = 0.0; | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 | /* Set "first iteration" flag. */ | 
|---|
| 295 | first = TRUE; | 
|---|
| 296 |  | 
|---|
| 297 | /* Step through the time left. */ | 
|---|
| 298 | while ( fb * tleft > 0.0 ) { | 
|---|
| 299 |  | 
|---|
| 300 | /* Magnitude of current acceleration due to planetary attractions. */ | 
|---|
| 301 | if ( first ) { | 
|---|
| 302 | ts = TSMIN; | 
|---|
| 303 | } else { | 
|---|
| 304 | r2 = 0.0; | 
|---|
| 305 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 306 | w = fd[i]; | 
|---|
| 307 | r2 += w * w; | 
|---|
| 308 | } | 
|---|
| 309 | w = sqrt ( r2 ); | 
|---|
| 310 |  | 
|---|
| 311 | /* Use the acceleration to decide how big a timestep can be tolerated. */ | 
|---|
| 312 | if ( w != 0.0 ) { | 
|---|
| 313 | ts = TSC / w; | 
|---|
| 314 | if ( ts > TSMAX ) { | 
|---|
| 315 | ts = TSMAX; | 
|---|
| 316 | } else if ( ts < TSMIN ) { | 
|---|
| 317 | ts = TSMIN; | 
|---|
| 318 | } | 
|---|
| 319 | } else { | 
|---|
| 320 | ts = TSMAX; | 
|---|
| 321 | } | 
|---|
| 322 | } | 
|---|
| 323 | ts *= fb; | 
|---|
| 324 |  | 
|---|
| 325 | /* Override if final epoch is imminent. */ | 
|---|
| 326 | tleft = tspan - rtn; | 
|---|
| 327 | if ( fabs ( ts ) > fabs ( tleft ) ) ts = tleft; | 
|---|
| 328 |  | 
|---|
| 329 | /* Epoch of middle of timestep. */ | 
|---|
| 330 | hts = ts / 2.0; | 
|---|
| 331 | t = t0 + rtn + hts; | 
|---|
| 332 |  | 
|---|
| 333 | /* Is it time to recompute the major-planet elements? */ | 
|---|
| 334 | if ( first || ( fabs ( t - tpel ) - AGEPEL ) >= TINY ) { | 
|---|
| 335 |  | 
|---|
| 336 | /* Yes: go forward in time by just under the maximum allowed. */ | 
|---|
| 337 | tpel = t + fb * AGEPEL; | 
|---|
| 338 |  | 
|---|
| 339 | /* Compute the state vector for the new epoch. */ | 
|---|
| 340 | for ( np = 1; np <= 8; np++ ) { | 
|---|
| 341 | npm1 = np - 1; | 
|---|
| 342 |  | 
|---|
| 343 | slaPlanet ( tpel, np, pv, &j ); | 
|---|
| 344 |  | 
|---|
| 345 | /* Warning if remote epoch, abort if error. */ | 
|---|
| 346 | if ( j == 1 ) { | 
|---|
| 347 | *jstat = 102; | 
|---|
| 348 | } else if ( j ) { | 
|---|
| 349 | *jstat = -1; | 
|---|
| 350 | return; | 
|---|
| 351 | } | 
|---|
| 352 |  | 
|---|
| 353 | /* Transform the vector into universal elements. */ | 
|---|
| 354 | slaPv2ue ( pv, tpel, 0.0, up[npm1], &j ); | 
|---|
| 355 | if ( j ) { | 
|---|
| 356 | *jstat = -1; | 
|---|
| 357 | return; | 
|---|
| 358 | } | 
|---|
| 359 | } | 
|---|
| 360 | } | 
|---|
| 361 |  | 
|---|
| 362 | /* Is it time to recompute the major-planet motions? */ | 
|---|
| 363 | if ( first || ( fabs ( t - tpmo ) - AGEPMO ) >= TINY ) { | 
|---|
| 364 |  | 
|---|
| 365 | /* Yes: look ahead. */ | 
|---|
| 366 | tpmo = t + fb * AGEPMO; | 
|---|
| 367 |  | 
|---|
| 368 | /* Compute the motions of each planet (AU,AU/d). */ | 
|---|
| 369 | for ( np = 1; np <= 8; np++ ) { | 
|---|
| 370 | npm1 = np - 1; | 
|---|
| 371 |  | 
|---|
| 372 | /* The planet's position and velocity (AU,AU/s). */ | 
|---|
| 373 | slaUe2pv ( tpmo, up[npm1], pvin[npm1], &j ); | 
|---|
| 374 | if ( j ) { | 
|---|
| 375 | *jstat = -1; | 
|---|
| 376 | return; | 
|---|
| 377 | } | 
|---|
| 378 |  | 
|---|
| 379 | /* Scale velocity to AU/d. */ | 
|---|
| 380 | for ( j = 3; j < 6; j++ ) { | 
|---|
| 381 | pvin[npm1][j] *= 86400.0; | 
|---|
| 382 | } | 
|---|
| 383 |  | 
|---|
| 384 | /* Precompute also the extrapolation correction terms. */ | 
|---|
| 385 | r2 = 0.0; | 
|---|
| 386 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 387 | w = pvin[npm1][i]; | 
|---|
| 388 | r2 += w * w; | 
|---|
| 389 | } | 
|---|
| 390 | r2x3[npm1] = r2 * 3.0; | 
|---|
| 391 | gc[npm1] = GCON2 / ( 2.0 * r2 * sqrt ( r2 ) ); | 
|---|
| 392 | } | 
|---|
| 393 | } | 
|---|
| 394 |  | 
|---|
| 395 | /* Reset the first-time flag. */ | 
|---|
| 396 | first = FALSE; | 
|---|
| 397 |  | 
|---|
| 398 | /* Unperturbed motion of the body at middle of timestep (AU,AU/s). */ | 
|---|
| 399 | slaUe2pv ( t, ul, pv0, &j ); | 
|---|
| 400 | if ( j ) { | 
|---|
| 401 | *jstat = -1; | 
|---|
| 402 | return; | 
|---|
| 403 | } | 
|---|
| 404 |  | 
|---|
| 405 | /* Perturbed position of the body (AU) and heliocentric distance cubed. */ | 
|---|
| 406 | r2 = 0.0; | 
|---|
| 407 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 408 | w = pv0[i] + perp[i] + ( perv[i] + pera[i] * hts / 2.0 ) * hts; | 
|---|
| 409 | pv[i] = w; | 
|---|
| 410 | r2 += w * w; | 
|---|
| 411 | } | 
|---|
| 412 | r3 = r2 * sqrt ( r2 ); | 
|---|
| 413 |  | 
|---|
| 414 | /* The body's unperturbed heliocentric distance cubed. */ | 
|---|
| 415 | r2 = 0.0; | 
|---|
| 416 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 417 | w = pv0[i]; | 
|---|
| 418 | r2 += w * w; | 
|---|
| 419 | } | 
|---|
| 420 | r03 = r2 * sqrt ( r2 ); | 
|---|
| 421 |  | 
|---|
| 422 | /* Compute indirect and initialize direct parts of the perturbation. */ | 
|---|
| 423 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 424 | fi[i] = pv0[i] / r03 - pv[i] / r3; | 
|---|
| 425 | fd[i] = 0.0; | 
|---|
| 426 | } | 
|---|
| 427 |  | 
|---|
| 428 | /* Ready to compute the direct planetary effects. */ | 
|---|
| 429 |  | 
|---|
| 430 | /* Interval from state-vector epoch to middle of current timestep. */ | 
|---|
| 431 | dt = t - tpmo; | 
|---|
| 432 | dt2 = dt * dt; | 
|---|
| 433 |  | 
|---|
| 434 | /* Planet by planet. */ | 
|---|
| 435 | for ( np = 1; np <= 8; np++ ) { | 
|---|
| 436 | npm1 = np - 1; | 
|---|
| 437 |  | 
|---|
| 438 | /* First compute the extrapolation in longitude (squared). */ | 
|---|
| 439 | r2 = 0.0; | 
|---|
| 440 | for ( j = 3; j < 6; j++ ) { | 
|---|
| 441 | w = pvin[npm1][j] * dt; | 
|---|
| 442 | r2 += w * w; | 
|---|
| 443 | } | 
|---|
| 444 |  | 
|---|
| 445 | /* Hence the tangential-to-circular correction factor. */ | 
|---|
| 446 | fc = 1.0 + r2 / r2x3[npm1]; | 
|---|
| 447 |  | 
|---|
| 448 | /* The radial correction factor due to the inwards acceleration. */ | 
|---|
| 449 | fg = 1.0 - gc[npm1] * dt2; | 
|---|
| 450 |  | 
|---|
| 451 | /* Planet's position, and heliocentric distance cubed. */ | 
|---|
| 452 | r2 = 0.0; | 
|---|
| 453 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 454 | w = fg * ( pvin[npm1][i] + fc * pvin[npm1][i+3] * dt ); | 
|---|
| 455 | rho[i] = w; | 
|---|
| 456 | r2 += w * w; | 
|---|
| 457 | } | 
|---|
| 458 | rho3 = r2 * sqrt ( r2 ); | 
|---|
| 459 |  | 
|---|
| 460 | /* Body-to-planet vector, and distance cubed. */ | 
|---|
| 461 | r2 = 0.0; | 
|---|
| 462 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 463 | w = rho[i] - pv[i]; | 
|---|
| 464 | delta[i] = w; | 
|---|
| 465 | r2 += w * w; | 
|---|
| 466 | } | 
|---|
| 467 | delta3 = r2 * sqrt ( r2 ); | 
|---|
| 468 |  | 
|---|
| 469 | /* If too close, ignore this planet and set a warning. */ | 
|---|
| 470 | if ( r2 < 1e-6 ) { | 
|---|
| 471 | *jstat = np; | 
|---|
| 472 | } else { | 
|---|
| 473 |  | 
|---|
| 474 | /* Accumulate "direct" part of perturbation acceleration. */ | 
|---|
| 475 | w = amas[npm1]; | 
|---|
| 476 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 477 | fd[i] += ( delta[i] / delta3 - rho[i] / rho3 ) / w; | 
|---|
| 478 | } | 
|---|
| 479 | } | 
|---|
| 480 | } | 
|---|
| 481 |  | 
|---|
| 482 | /* Update the perturbations to the end of the timestep. */ | 
|---|
| 483 | rtn = rtn + ts; | 
|---|
| 484 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 485 | w = ( fi[i] + fd[i] ) * GCON2; | 
|---|
| 486 | ft = w * ts; | 
|---|
| 487 | perp[i] += ( perv[i] + ft / 2.0 ) * ts; | 
|---|
| 488 | perv[i] += ft; | 
|---|
| 489 | pera[i] = w; | 
|---|
| 490 | } | 
|---|
| 491 |  | 
|---|
| 492 | /* Time still to go. */ | 
|---|
| 493 | tleft = tspan - rtn; | 
|---|
| 494 |  | 
|---|
| 495 | /* Is it either time to rectify the orbit or the last time through? */ | 
|---|
| 496 | if ( fabs ( rtn ) >= AGEBEL || ( fb * tleft ) <= 0.0 ) { | 
|---|
| 497 |  | 
|---|
| 498 | /* Yes: update to the end of the current timestep. */ | 
|---|
| 499 | t0 += rtn; | 
|---|
| 500 | rtn = 0.0; | 
|---|
| 501 |  | 
|---|
| 502 | /* The body's unperturbed motion (AU,AU/s). */ | 
|---|
| 503 | slaUe2pv ( t0, ul, pv0, &j ); | 
|---|
| 504 | if ( j ) { | 
|---|
| 505 | *jstat = -1; | 
|---|
| 506 | return; | 
|---|
| 507 | } | 
|---|
| 508 |  | 
|---|
| 509 | /* Add and re-initialize the perturbations. */ | 
|---|
| 510 | for ( i = 0; i < 3; i++ ) { | 
|---|
| 511 | j = i + 3; | 
|---|
| 512 | pv[i] = pv0[i] + perp[i]; | 
|---|
| 513 | pv[j] = pv0[j] + perv[i] / 86400.0; | 
|---|
| 514 | perp[i] = 0.0; | 
|---|
| 515 | perv[i] = 0.0; | 
|---|
| 516 | pera[i] = fd[i] * GCON2; | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|
| 519 | /* Use the position and velocity to set up new universal elements. */ | 
|---|
| 520 | slaPv2ue ( pv, t0, 0.0, ul, &j ); | 
|---|
| 521 | if ( j ) { | 
|---|
| 522 | *jstat = -1; | 
|---|
| 523 | return; | 
|---|
| 524 | } | 
|---|
| 525 |  | 
|---|
| 526 | /* Adjust the timespan and time left. */ | 
|---|
| 527 | tspan = tfinal - t0; | 
|---|
| 528 | tleft = tspan; | 
|---|
| 529 | } | 
|---|
| 530 |  | 
|---|
| 531 | /* Next timestep. */ | 
|---|
| 532 | } | 
|---|
| 533 |  | 
|---|
| 534 | /* Return the updated universal-element set. */ | 
|---|
| 535 | for ( i = 0; i < 13; i++ ) { | 
|---|
| 536 | u[i] = ul[i]; | 
|---|
| 537 | } | 
|---|
| 538 |  | 
|---|
| 539 | } | 
|---|