| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | void slaPertue ( double date, double u[], int *jstat )
|
|---|
| 4 | /*
|
|---|
| 5 | ** - - - - - - - - - -
|
|---|
| 6 | ** s l a P e r t u e
|
|---|
| 7 | ** - - - - - - - - - -
|
|---|
| 8 | **
|
|---|
| 9 | ** Update the universal elements of an asteroid or comet by applying
|
|---|
| 10 | ** planetary perturbations.
|
|---|
| 11 | **
|
|---|
| 12 | ** Given:
|
|---|
| 13 | ** date double final epoch (TT MJD) for the updated elements
|
|---|
| 14 | **
|
|---|
| 15 | ** Given and returned:
|
|---|
| 16 | **
|
|---|
| 17 | ** u double[13] universal orbital elements (Note 1)
|
|---|
| 18 | **
|
|---|
| 19 | ** [0] combined mass (M+m)
|
|---|
| 20 | ** [1] total energy of the orbit (alpha)
|
|---|
| 21 | ** [2] reference (osculating) epoch (t0)
|
|---|
| 22 | ** [3-5] position at reference epoch (r0)
|
|---|
| 23 | ** [6-8] velocity at reference epoch (v0)
|
|---|
| 24 | ** [9] heliocentric distance at reference epoch
|
|---|
| 25 | ** [10] r0.v0
|
|---|
| 26 | ** [11] date (t)
|
|---|
| 27 | ** [12] universal eccentric anomaly (psi) of date, approx
|
|---|
| 28 | **
|
|---|
| 29 | ** Returned:
|
|---|
| 30 | ** jstat int* status:
|
|---|
| 31 | ** +102 = warning, distant epoch
|
|---|
| 32 | ** +101 = warning, large timespan ( > 100 years)
|
|---|
| 33 | ** +1 to +8 = coincident with major planet (Note 5)
|
|---|
| 34 | ** 0 = OK
|
|---|
| 35 | ** -1 = numerical error
|
|---|
| 36 | **
|
|---|
| 37 | ** Called: slaPlanet, slaUe2pv, slaPv2ue
|
|---|
| 38 | **
|
|---|
| 39 | ** Notes:
|
|---|
| 40 | **
|
|---|
| 41 | ** 1 The "universal" elements are those which define the orbit for the
|
|---|
| 42 | ** purposes of the method of universal variables (see reference 2).
|
|---|
| 43 | ** They consist of the combined mass of the two bodies, an epoch,
|
|---|
| 44 | ** and the position and velocity vectors (arbitrary reference frame)
|
|---|
| 45 | ** at that epoch. The parameter set used here includes also various
|
|---|
| 46 | ** quantities that can, in fact, be derived from the other
|
|---|
| 47 | ** information. This approach is taken to avoiding unnecessary
|
|---|
| 48 | ** computation and loss of accuracy. The supplementary quantities
|
|---|
| 49 | ** are (i) alpha, which is proportional to the total energy of the
|
|---|
| 50 | ** orbit, (ii) the heliocentric distance at epoch, (iii) the
|
|---|
| 51 | ** outwards component of the velocity at the given epoch, (iv) an
|
|---|
| 52 | ** estimate of psi, the "universal eccentric anomaly" at a given
|
|---|
| 53 | ** date and (v) that date.
|
|---|
| 54 | **
|
|---|
| 55 | ** 2 The universal elements are with respect to the J2000 equator and
|
|---|
| 56 | ** equinox.
|
|---|
| 57 | **
|
|---|
| 58 | ** 3 The epochs date, u[2] and u[11] are all Modified Julian Dates
|
|---|
| 59 | ** (JD-2400000.5).
|
|---|
| 60 | **
|
|---|
| 61 | ** 4 The algorithm is a simplified form of Encke's method. It takes as
|
|---|
| 62 | ** a basis the unperturbed motion of the body, and numerically
|
|---|
| 63 | ** integrates the perturbing accelerations from the major planets.
|
|---|
| 64 | ** The expression used is essentially Sterne's 6.7-2 (reference 1).
|
|---|
| 65 | ** Everhart and Pitkin (reference 2) suggest rectifying the orbit at
|
|---|
| 66 | ** each integration step by propagating the new perturbed position
|
|---|
| 67 | ** and velocity as the new universal variables. In the present
|
|---|
| 68 | ** routine the orbit is rectified less frequently than this, in order
|
|---|
| 69 | ** to gain a slight speed advantage. However, the rectification is
|
|---|
| 70 | ** done directly in terms of position and velocity, as suggested by
|
|---|
| 71 | ** Everhart and Pitkin, bypassing the use of conventional orbital
|
|---|
| 72 | ** elements.
|
|---|
| 73 | **
|
|---|
| 74 | ** The f(q) part of the full Encke method is not used. The purpose
|
|---|
| 75 | ** of this part is to avoid subtracting two nearly equal quantities
|
|---|
| 76 | ** when calculating the "indirect member", which takes account of the
|
|---|
| 77 | ** small change in the Sun's attraction due to the slightly displaced
|
|---|
| 78 | ** position of the perturbed body. A simpler, direct calculation in
|
|---|
| 79 | ** double precision proves to be faster and not significantly less
|
|---|
| 80 | ** accurate.
|
|---|
| 81 | **
|
|---|
| 82 | ** Apart from employing a variable timestep, and occasionally
|
|---|
| 83 | ** "rectifying the orbit" to keep the indirect member small, the
|
|---|
| 84 | ** integration is done in a fairly straightforward way. The
|
|---|
| 85 | ** acceleration estimated for the middle of the timestep is assumed
|
|---|
| 86 | ** to apply throughout that timestep; it is also used in the
|
|---|
| 87 | ** extrapolation of the perturbations to the middle of the next
|
|---|
| 88 | ** timestep, to predict the new disturbed position. There is no
|
|---|
| 89 | ** iteration within a timestep.
|
|---|
| 90 | **
|
|---|
| 91 | ** Measures are taken to reach a compromise between execution time
|
|---|
| 92 | ** and accuracy. The starting-point is the goal of achieving
|
|---|
| 93 | ** arcsecond accuracy for ordinary minor planets over a ten-year
|
|---|
| 94 | ** timespan. This goal dictates how large the timesteps can be,
|
|---|
| 95 | ** which in turn dictates how frequently the unperturbed motion has
|
|---|
| 96 | ** to be recalculated from the osculating elements.
|
|---|
| 97 | **
|
|---|
| 98 | ** Within predetermined limits, the timestep for the numerical
|
|---|
| 99 | ** integration is varied in length in inverse proportion to the
|
|---|
| 100 | ** magnitude of the net acceleration on the body from the major
|
|---|
| 101 | ** planets.
|
|---|
| 102 | **
|
|---|
| 103 | ** The numerical integration requires estimates of the major-planet
|
|---|
| 104 | ** motions. Approximate positions for the major planets (Pluto
|
|---|
| 105 | ** alone is omitted) are obtained from the routine slaPlanet. Two
|
|---|
| 106 | ** levels of interpolation are used, to enhance speed without
|
|---|
| 107 | ** significantly degrading accuracy. At a low frequency, the routine
|
|---|
| 108 | ** slaPlanet is called to generate updated position+velocity "state
|
|---|
| 109 | ** vectors". The only task remaining to be carried out at the full
|
|---|
| 110 | ** frequency (i.e. at each integration step) is to use the state
|
|---|
| 111 | ** vectors to extrapolate the planetary positions. In place of a
|
|---|
| 112 | ** strictly linear extrapolation, some allowance is made for the
|
|---|
| 113 | ** curvature of the orbit by scaling back the radius vector as the
|
|---|
| 114 | ** linear extrapolation goes off at a tangent.
|
|---|
| 115 | **
|
|---|
| 116 | ** Various other approximations are made. For example, perturbations
|
|---|
| 117 | ** by Pluto and the minor planets are neglected, relativistic effects
|
|---|
| 118 | ** are not taken into account and the Earth-Moon system is treated as
|
|---|
| 119 | ** a single body.
|
|---|
| 120 | **
|
|---|
| 121 | ** In the interests of simplicity, the background calculations for
|
|---|
| 122 | ** the major planets are carried out en masse. The mean elements and
|
|---|
| 123 | ** state vectors for all the planets are refreshed at the same time,
|
|---|
| 124 | ** without regard for orbit curvature, mass or proximity.
|
|---|
| 125 | **
|
|---|
| 126 | ** 5 This routine is not intended to be used for major planets.
|
|---|
| 127 | ** However, if major-planet elements are supplied, sensible results
|
|---|
| 128 | ** will, in fact, be produced. This happens because the routine
|
|---|
| 129 | ** checks the separation between the body and each of the planets and
|
|---|
| 130 | ** interprets a suspiciously small value (0.001 AU) as an attempt to
|
|---|
| 131 | ** apply the routine to the planet concerned. If this condition is
|
|---|
| 132 | ** detected, the contribution from that planet is ignored, and the
|
|---|
| 133 | ** status is set to the planet number (Mercury=1,...,Neptune=8) as a
|
|---|
| 134 | ** warning.
|
|---|
| 135 | **
|
|---|
| 136 | ** References:
|
|---|
| 137 | **
|
|---|
| 138 | ** 1 Sterne, Theodore E., "An Introduction to Celestial Mechanics",
|
|---|
| 139 | ** Interscience Publishers Inc., 1960. Section 6.7, p199.
|
|---|
| 140 | **
|
|---|
| 141 | ** 2 Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983.
|
|---|
| 142 | **
|
|---|
| 143 | ** Last revision: 18 March 1999
|
|---|
| 144 | **
|
|---|
| 145 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 146 | */
|
|---|
| 147 |
|
|---|
| 148 | /* Coefficient relating timestep to perturbing force */
|
|---|
| 149 | #define TSC 1e-4
|
|---|
| 150 |
|
|---|
| 151 | /* Minimum and maximum timestep (days) */
|
|---|
| 152 | #define TSMIN 0.01
|
|---|
| 153 | #define TSMAX 10.0
|
|---|
| 154 |
|
|---|
| 155 | /* Age limit for major-planet state vector (days) */
|
|---|
| 156 | #define AGEPMO 5.0
|
|---|
| 157 |
|
|---|
| 158 | /* Age limit for major-planet mean elements (days) */
|
|---|
| 159 | #define AGEPEL 50.0
|
|---|
| 160 |
|
|---|
| 161 | /* Margin for error when deciding whether to renew the planetary data */
|
|---|
| 162 | #define TINY 1e-6
|
|---|
| 163 |
|
|---|
| 164 | /* Age limit for the body's osculating elements (before rectification) */
|
|---|
| 165 | #define AGEBEL 100.0
|
|---|
| 166 |
|
|---|
| 167 | /* Gaussian gravitational constant (exact) and square */
|
|---|
| 168 | #define GCON 0.01720209895
|
|---|
| 169 | #define GCON2 (GCON*GCON)
|
|---|
| 170 |
|
|---|
| 171 | {
|
|---|
| 172 |
|
|---|
| 173 | /* The final epoch */
|
|---|
| 174 | double tfinal;
|
|---|
| 175 |
|
|---|
| 176 | /* The body's current universal elements */
|
|---|
| 177 | double ul[13];
|
|---|
| 178 |
|
|---|
| 179 | /* Current reference epoch */
|
|---|
| 180 | double t0;
|
|---|
| 181 |
|
|---|
| 182 | /* Timespan from latest orbit rectification to final epoch (days) */
|
|---|
| 183 | double tspan;
|
|---|
| 184 |
|
|---|
| 185 | /* Time left to go before integration is complete */
|
|---|
| 186 | double tleft;
|
|---|
| 187 |
|
|---|
| 188 | /* Time direction flag: +1=forwards, -1=backwards */
|
|---|
| 189 | double fb;
|
|---|
| 190 |
|
|---|
| 191 | /* First-time flag */
|
|---|
| 192 | int first;
|
|---|
| 193 |
|
|---|
| 194 | /* The current perturbations */
|
|---|
| 195 | double rtn, /* Epoch (days relative to current reference epoch) */
|
|---|
| 196 | perp[3], /* Position (AU) */
|
|---|
| 197 | perv[3], /* Velocity (AU/d) */
|
|---|
| 198 | pera[3]; /* Acceleration (AU/d/d) */
|
|---|
| 199 |
|
|---|
| 200 | /* Length of current timestep (days), and half that */
|
|---|
| 201 | double ts, hts;
|
|---|
| 202 |
|
|---|
| 203 | /* Epoch of middle of timestep */
|
|---|
| 204 | double t;
|
|---|
| 205 |
|
|---|
| 206 | /* Epoch of planetary mean elements */
|
|---|
| 207 | double tpel;
|
|---|
| 208 |
|
|---|
| 209 | /* Planet number (1=Mercury, 2=Venus, 3=EMB...8=Neptune) */
|
|---|
| 210 | int np;
|
|---|
| 211 |
|
|---|
| 212 | /* Planetary universal orbital elements */
|
|---|
| 213 | double up[8][13];
|
|---|
| 214 |
|
|---|
| 215 | /* Epoch of planetary state vectors */
|
|---|
| 216 | double tpmo;
|
|---|
| 217 |
|
|---|
| 218 | /* State vectors for the major planets (AU,AU/s) */
|
|---|
| 219 | double pvin[8][6];
|
|---|
| 220 |
|
|---|
| 221 | /* Correction terms for extrapolated major planet vectors */
|
|---|
| 222 | double r2x3[8], /* Sun-to-planet distances squared multiplied by 3 */
|
|---|
| 223 | gc[8], /* Sunward acceleration terms, G/2R^3 */
|
|---|
| 224 | fc, /* Tangential-to-circular correction factor */
|
|---|
| 225 | fg; /* Radial correction factor due to Sunwards acceleration */
|
|---|
| 226 |
|
|---|
| 227 | /* The body's unperturbed and perturbed state vectors (AU,AU/s) */
|
|---|
| 228 | double pv0[6], pv[6];
|
|---|
| 229 |
|
|---|
| 230 | /* The body's perturbed and unperturbed heliocentric distances (AU) cubed */
|
|---|
| 231 | double r03, r3;
|
|---|
| 232 |
|
|---|
| 233 | /* The perturbating accelerations, indirect and direct */
|
|---|
| 234 | double fi[3], fd[3];
|
|---|
| 235 |
|
|---|
| 236 | /* Sun-to-planet vector, and distance cubed */
|
|---|
| 237 | double rho[3], rho3;
|
|---|
| 238 |
|
|---|
| 239 | /* Body-to-planet vector, and distance cubed */
|
|---|
| 240 | double delta[3], delta3;
|
|---|
| 241 |
|
|---|
| 242 | /* Miscellaneous */
|
|---|
| 243 | int i, j, npm1;
|
|---|
| 244 | double r2, w, dt, dt2, ft;
|
|---|
| 245 |
|
|---|
| 246 | /* Planetary inverse masses, Mercury through Neptune */
|
|---|
| 247 | static double amas[] = {
|
|---|
| 248 | 6023600.0,
|
|---|
| 249 | 408523.5,
|
|---|
| 250 | 328900.5,
|
|---|
| 251 | 3098710.0,
|
|---|
| 252 | 1047.355,
|
|---|
| 253 | 3498.5,
|
|---|
| 254 | 22869.0,
|
|---|
| 255 | 19314.0
|
|---|
| 256 | };
|
|---|
| 257 |
|
|---|
| 258 |
|
|---|
| 259 |
|
|---|
| 260 | /* Preset the status to OK. */
|
|---|
| 261 | *jstat = 0;
|
|---|
| 262 |
|
|---|
| 263 | /* Copy the final epoch. */
|
|---|
| 264 | tfinal = date;
|
|---|
| 265 |
|
|---|
| 266 | /* Copy the elements (which will be periodically updated). */
|
|---|
| 267 | for ( i = 0; i < 13; i++ ) {
|
|---|
| 268 | ul[i] = u[i];
|
|---|
| 269 | }
|
|---|
| 270 |
|
|---|
| 271 | /* Initialize the working reference epoch. */
|
|---|
| 272 | t0 = ul[2];
|
|---|
| 273 |
|
|---|
| 274 | /* Total timespan (days) and hence time left. */
|
|---|
| 275 | tspan = tfinal - t0;
|
|---|
| 276 | tleft = tspan;
|
|---|
| 277 |
|
|---|
| 278 | /* Warn if excessive. */
|
|---|
| 279 | if ( fabs ( tspan ) > 36525.0 ) *jstat = 101;
|
|---|
| 280 |
|
|---|
| 281 | /* Time direction: +1 for forwards, -1 for backwards. */
|
|---|
| 282 | fb = dsign ( 1.0, tspan );
|
|---|
| 283 |
|
|---|
| 284 | /* Initialize relative epoch for start of current timestep. */
|
|---|
| 285 | rtn = 0.0;
|
|---|
| 286 |
|
|---|
| 287 | /* Reset the perturbations (position, velocity, acceleration). */
|
|---|
| 288 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 289 | perp[i] = 0.0;
|
|---|
| 290 | perv[i] = 0.0;
|
|---|
| 291 | pera[i] = 0.0;
|
|---|
| 292 | }
|
|---|
| 293 |
|
|---|
| 294 | /* Set "first iteration" flag. */
|
|---|
| 295 | first = TRUE;
|
|---|
| 296 |
|
|---|
| 297 | /* Step through the time left. */
|
|---|
| 298 | while ( fb * tleft > 0.0 ) {
|
|---|
| 299 |
|
|---|
| 300 | /* Magnitude of current acceleration due to planetary attractions. */
|
|---|
| 301 | if ( first ) {
|
|---|
| 302 | ts = TSMIN;
|
|---|
| 303 | } else {
|
|---|
| 304 | r2 = 0.0;
|
|---|
| 305 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 306 | w = fd[i];
|
|---|
| 307 | r2 += w * w;
|
|---|
| 308 | }
|
|---|
| 309 | w = sqrt ( r2 );
|
|---|
| 310 |
|
|---|
| 311 | /* Use the acceleration to decide how big a timestep can be tolerated. */
|
|---|
| 312 | if ( w != 0.0 ) {
|
|---|
| 313 | ts = TSC / w;
|
|---|
| 314 | if ( ts > TSMAX ) {
|
|---|
| 315 | ts = TSMAX;
|
|---|
| 316 | } else if ( ts < TSMIN ) {
|
|---|
| 317 | ts = TSMIN;
|
|---|
| 318 | }
|
|---|
| 319 | } else {
|
|---|
| 320 | ts = TSMAX;
|
|---|
| 321 | }
|
|---|
| 322 | }
|
|---|
| 323 | ts *= fb;
|
|---|
| 324 |
|
|---|
| 325 | /* Override if final epoch is imminent. */
|
|---|
| 326 | tleft = tspan - rtn;
|
|---|
| 327 | if ( fabs ( ts ) > fabs ( tleft ) ) ts = tleft;
|
|---|
| 328 |
|
|---|
| 329 | /* Epoch of middle of timestep. */
|
|---|
| 330 | hts = ts / 2.0;
|
|---|
| 331 | t = t0 + rtn + hts;
|
|---|
| 332 |
|
|---|
| 333 | /* Is it time to recompute the major-planet elements? */
|
|---|
| 334 | if ( first || ( fabs ( t - tpel ) - AGEPEL ) >= TINY ) {
|
|---|
| 335 |
|
|---|
| 336 | /* Yes: go forward in time by just under the maximum allowed. */
|
|---|
| 337 | tpel = t + fb * AGEPEL;
|
|---|
| 338 |
|
|---|
| 339 | /* Compute the state vector for the new epoch. */
|
|---|
| 340 | for ( np = 1; np <= 8; np++ ) {
|
|---|
| 341 | npm1 = np - 1;
|
|---|
| 342 |
|
|---|
| 343 | slaPlanet ( tpel, np, pv, &j );
|
|---|
| 344 |
|
|---|
| 345 | /* Warning if remote epoch, abort if error. */
|
|---|
| 346 | if ( j == 1 ) {
|
|---|
| 347 | *jstat = 102;
|
|---|
| 348 | } else if ( j ) {
|
|---|
| 349 | *jstat = -1;
|
|---|
| 350 | return;
|
|---|
| 351 | }
|
|---|
| 352 |
|
|---|
| 353 | /* Transform the vector into universal elements. */
|
|---|
| 354 | slaPv2ue ( pv, tpel, 0.0, up[npm1], &j );
|
|---|
| 355 | if ( j ) {
|
|---|
| 356 | *jstat = -1;
|
|---|
| 357 | return;
|
|---|
| 358 | }
|
|---|
| 359 | }
|
|---|
| 360 | }
|
|---|
| 361 |
|
|---|
| 362 | /* Is it time to recompute the major-planet motions? */
|
|---|
| 363 | if ( first || ( fabs ( t - tpmo ) - AGEPMO ) >= TINY ) {
|
|---|
| 364 |
|
|---|
| 365 | /* Yes: look ahead. */
|
|---|
| 366 | tpmo = t + fb * AGEPMO;
|
|---|
| 367 |
|
|---|
| 368 | /* Compute the motions of each planet (AU,AU/d). */
|
|---|
| 369 | for ( np = 1; np <= 8; np++ ) {
|
|---|
| 370 | npm1 = np - 1;
|
|---|
| 371 |
|
|---|
| 372 | /* The planet's position and velocity (AU,AU/s). */
|
|---|
| 373 | slaUe2pv ( tpmo, up[npm1], pvin[npm1], &j );
|
|---|
| 374 | if ( j ) {
|
|---|
| 375 | *jstat = -1;
|
|---|
| 376 | return;
|
|---|
| 377 | }
|
|---|
| 378 |
|
|---|
| 379 | /* Scale velocity to AU/d. */
|
|---|
| 380 | for ( j = 3; j < 6; j++ ) {
|
|---|
| 381 | pvin[npm1][j] *= 86400.0;
|
|---|
| 382 | }
|
|---|
| 383 |
|
|---|
| 384 | /* Precompute also the extrapolation correction terms. */
|
|---|
| 385 | r2 = 0.0;
|
|---|
| 386 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 387 | w = pvin[npm1][i];
|
|---|
| 388 | r2 += w * w;
|
|---|
| 389 | }
|
|---|
| 390 | r2x3[npm1] = r2 * 3.0;
|
|---|
| 391 | gc[npm1] = GCON2 / ( 2.0 * r2 * sqrt ( r2 ) );
|
|---|
| 392 | }
|
|---|
| 393 | }
|
|---|
| 394 |
|
|---|
| 395 | /* Reset the first-time flag. */
|
|---|
| 396 | first = FALSE;
|
|---|
| 397 |
|
|---|
| 398 | /* Unperturbed motion of the body at middle of timestep (AU,AU/s). */
|
|---|
| 399 | slaUe2pv ( t, ul, pv0, &j );
|
|---|
| 400 | if ( j ) {
|
|---|
| 401 | *jstat = -1;
|
|---|
| 402 | return;
|
|---|
| 403 | }
|
|---|
| 404 |
|
|---|
| 405 | /* Perturbed position of the body (AU) and heliocentric distance cubed. */
|
|---|
| 406 | r2 = 0.0;
|
|---|
| 407 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 408 | w = pv0[i] + perp[i] + ( perv[i] + pera[i] * hts / 2.0 ) * hts;
|
|---|
| 409 | pv[i] = w;
|
|---|
| 410 | r2 += w * w;
|
|---|
| 411 | }
|
|---|
| 412 | r3 = r2 * sqrt ( r2 );
|
|---|
| 413 |
|
|---|
| 414 | /* The body's unperturbed heliocentric distance cubed. */
|
|---|
| 415 | r2 = 0.0;
|
|---|
| 416 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 417 | w = pv0[i];
|
|---|
| 418 | r2 += w * w;
|
|---|
| 419 | }
|
|---|
| 420 | r03 = r2 * sqrt ( r2 );
|
|---|
| 421 |
|
|---|
| 422 | /* Compute indirect and initialize direct parts of the perturbation. */
|
|---|
| 423 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 424 | fi[i] = pv0[i] / r03 - pv[i] / r3;
|
|---|
| 425 | fd[i] = 0.0;
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | /* Ready to compute the direct planetary effects. */
|
|---|
| 429 |
|
|---|
| 430 | /* Interval from state-vector epoch to middle of current timestep. */
|
|---|
| 431 | dt = t - tpmo;
|
|---|
| 432 | dt2 = dt * dt;
|
|---|
| 433 |
|
|---|
| 434 | /* Planet by planet. */
|
|---|
| 435 | for ( np = 1; np <= 8; np++ ) {
|
|---|
| 436 | npm1 = np - 1;
|
|---|
| 437 |
|
|---|
| 438 | /* First compute the extrapolation in longitude (squared). */
|
|---|
| 439 | r2 = 0.0;
|
|---|
| 440 | for ( j = 3; j < 6; j++ ) {
|
|---|
| 441 | w = pvin[npm1][j] * dt;
|
|---|
| 442 | r2 += w * w;
|
|---|
| 443 | }
|
|---|
| 444 |
|
|---|
| 445 | /* Hence the tangential-to-circular correction factor. */
|
|---|
| 446 | fc = 1.0 + r2 / r2x3[npm1];
|
|---|
| 447 |
|
|---|
| 448 | /* The radial correction factor due to the inwards acceleration. */
|
|---|
| 449 | fg = 1.0 - gc[npm1] * dt2;
|
|---|
| 450 |
|
|---|
| 451 | /* Planet's position, and heliocentric distance cubed. */
|
|---|
| 452 | r2 = 0.0;
|
|---|
| 453 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 454 | w = fg * ( pvin[npm1][i] + fc * pvin[npm1][i+3] * dt );
|
|---|
| 455 | rho[i] = w;
|
|---|
| 456 | r2 += w * w;
|
|---|
| 457 | }
|
|---|
| 458 | rho3 = r2 * sqrt ( r2 );
|
|---|
| 459 |
|
|---|
| 460 | /* Body-to-planet vector, and distance cubed. */
|
|---|
| 461 | r2 = 0.0;
|
|---|
| 462 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 463 | w = rho[i] - pv[i];
|
|---|
| 464 | delta[i] = w;
|
|---|
| 465 | r2 += w * w;
|
|---|
| 466 | }
|
|---|
| 467 | delta3 = r2 * sqrt ( r2 );
|
|---|
| 468 |
|
|---|
| 469 | /* If too close, ignore this planet and set a warning. */
|
|---|
| 470 | if ( r2 < 1e-6 ) {
|
|---|
| 471 | *jstat = np;
|
|---|
| 472 | } else {
|
|---|
| 473 |
|
|---|
| 474 | /* Accumulate "direct" part of perturbation acceleration. */
|
|---|
| 475 | w = amas[npm1];
|
|---|
| 476 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 477 | fd[i] += ( delta[i] / delta3 - rho[i] / rho3 ) / w;
|
|---|
| 478 | }
|
|---|
| 479 | }
|
|---|
| 480 | }
|
|---|
| 481 |
|
|---|
| 482 | /* Update the perturbations to the end of the timestep. */
|
|---|
| 483 | rtn = rtn + ts;
|
|---|
| 484 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 485 | w = ( fi[i] + fd[i] ) * GCON2;
|
|---|
| 486 | ft = w * ts;
|
|---|
| 487 | perp[i] += ( perv[i] + ft / 2.0 ) * ts;
|
|---|
| 488 | perv[i] += ft;
|
|---|
| 489 | pera[i] = w;
|
|---|
| 490 | }
|
|---|
| 491 |
|
|---|
| 492 | /* Time still to go. */
|
|---|
| 493 | tleft = tspan - rtn;
|
|---|
| 494 |
|
|---|
| 495 | /* Is it either time to rectify the orbit or the last time through? */
|
|---|
| 496 | if ( fabs ( rtn ) >= AGEBEL || ( fb * tleft ) <= 0.0 ) {
|
|---|
| 497 |
|
|---|
| 498 | /* Yes: update to the end of the current timestep. */
|
|---|
| 499 | t0 += rtn;
|
|---|
| 500 | rtn = 0.0;
|
|---|
| 501 |
|
|---|
| 502 | /* The body's unperturbed motion (AU,AU/s). */
|
|---|
| 503 | slaUe2pv ( t0, ul, pv0, &j );
|
|---|
| 504 | if ( j ) {
|
|---|
| 505 | *jstat = -1;
|
|---|
| 506 | return;
|
|---|
| 507 | }
|
|---|
| 508 |
|
|---|
| 509 | /* Add and re-initialize the perturbations. */
|
|---|
| 510 | for ( i = 0; i < 3; i++ ) {
|
|---|
| 511 | j = i + 3;
|
|---|
| 512 | pv[i] = pv0[i] + perp[i];
|
|---|
| 513 | pv[j] = pv0[j] + perv[i] / 86400.0;
|
|---|
| 514 | perp[i] = 0.0;
|
|---|
| 515 | perv[i] = 0.0;
|
|---|
| 516 | pera[i] = fd[i] * GCON2;
|
|---|
| 517 | }
|
|---|
| 518 |
|
|---|
| 519 | /* Use the position and velocity to set up new universal elements. */
|
|---|
| 520 | slaPv2ue ( pv, t0, 0.0, ul, &j );
|
|---|
| 521 | if ( j ) {
|
|---|
| 522 | *jstat = -1;
|
|---|
| 523 | return;
|
|---|
| 524 | }
|
|---|
| 525 |
|
|---|
| 526 | /* Adjust the timespan and time left. */
|
|---|
| 527 | tspan = tfinal - t0;
|
|---|
| 528 | tleft = tspan;
|
|---|
| 529 | }
|
|---|
| 530 |
|
|---|
| 531 | /* Next timestep. */
|
|---|
| 532 | }
|
|---|
| 533 |
|
|---|
| 534 | /* Return the updated universal-element set. */
|
|---|
| 535 | for ( i = 0; i < 13; i++ ) {
|
|---|
| 536 | u[i] = ul[i];
|
|---|
| 537 | }
|
|---|
| 538 |
|
|---|
| 539 | }
|
|---|