1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaPlanet ( double date, int np, double pv[6], int *jstat )
|
---|
4 | /*
|
---|
5 | ** - - - - - - - - - -
|
---|
6 | ** s l a P l a n e t
|
---|
7 | ** - - - - - - - - - -
|
---|
8 | **
|
---|
9 | ** Approximate heliocentric position and velocity of a specified
|
---|
10 | ** major planet.
|
---|
11 | **
|
---|
12 | ** Given:
|
---|
13 | ** date double TDB (loosely ET) as a Modified Julian Date
|
---|
14 | ** (JD-2400000.5)
|
---|
15 | ** np int planet (1=Mercury, 2=Venus, 3=EMB, ...
|
---|
16 | ** ... 9=Pluto)
|
---|
17 | **
|
---|
18 | ** Returned:
|
---|
19 | ** pv double[6] heliocentric x,y,z,xdot,ydot,zdot, J2000
|
---|
20 | ** equatorial triad (AU,AU/s)
|
---|
21 | **
|
---|
22 | ** *jstat int status: +1 = warning: date outside 1000-3000
|
---|
23 | ** *jstat int status: 0 = OK
|
---|
24 | ** -1 = illegal NP (outside 1-9)
|
---|
25 | ** -2 = solution didn't converge
|
---|
26 | **
|
---|
27 | ** Called: slaPlanel
|
---|
28 | **
|
---|
29 | ** Notes
|
---|
30 | **
|
---|
31 | ** 1 The epoch, date, is in the TDB timescale and is a Modified
|
---|
32 | ** Julian Date (JD-2400000.5).
|
---|
33 | **
|
---|
34 | ** 2 The reference frame is equatorial and is with respect to the
|
---|
35 | ** mean equinox and ecliptic of epoch J2000.
|
---|
36 | **
|
---|
37 | ** 3 If an np value outside the range 1-9 is supplied, an error
|
---|
38 | ** status (jstat = -1) is returned and the pv vector set to zeroes.
|
---|
39 | **
|
---|
40 | ** 4 The algorithm for obtaining the mean elements of the planets
|
---|
41 | ** from Mercury to Neptune is due to J.L. Simon, P. Bretagnon,
|
---|
42 | ** J. Chapront, M. Chapront-Touze, G. Francou and J. Laskar
|
---|
43 | ** (Bureau des Longitudes, Paris). The (completely different)
|
---|
44 | ** algorithm for calculating the ecliptic coordinates of Pluto
|
---|
45 | ** is by Meeus.
|
---|
46 | **
|
---|
47 | ** 5 Comparisons of the present routine with the JPL DE200 ephemeris
|
---|
48 | ** give the following RMS errors over the interval 1960-2025:
|
---|
49 | **
|
---|
50 | ** position (km) speed (metre/sec)
|
---|
51 | **
|
---|
52 | ** Mercury 334 0.437
|
---|
53 | ** Venus 1060 0.855
|
---|
54 | ** EMB 2010 0.815
|
---|
55 | ** Mars 7690 1.98
|
---|
56 | ** Jupiter 71700 7.70
|
---|
57 | ** Saturn 199000 19.4
|
---|
58 | ** Uranus 564000 16.4
|
---|
59 | ** Neptune 158000 14.4
|
---|
60 | **
|
---|
61 | ** From comparisons with DE102, Simon et al quote the following
|
---|
62 | ** longitude accuracies over the interval 1800-2200:
|
---|
63 | **
|
---|
64 | ** Mercury 4"
|
---|
65 | ** Venus 5"
|
---|
66 | ** EMB 6"
|
---|
67 | ** Mars 17"
|
---|
68 | ** Jupiter 71"
|
---|
69 | ** Saturn 81"
|
---|
70 | ** Uranus 86"
|
---|
71 | ** Neptune 11"
|
---|
72 | **
|
---|
73 | ** In the case of Pluto, Meeus quotes an accuracy of 0.6 arcsec
|
---|
74 | ** in longitude and 0.2 arcsec in latitude for the period
|
---|
75 | ** 1885-2099.
|
---|
76 | **
|
---|
77 | ** For all except Pluto, over the period 1000-3000 the accuracy
|
---|
78 | ** is better than 1.5 times that over 1800-2200. Outside the
|
---|
79 | ** period 1000-3000 the accuracy declines. For Pluto the
|
---|
80 | ** accuracy declines rapidly outside the period 1885-2099.
|
---|
81 | ** Outside these ranges (1885-2099 for Pluto, 1000-3000 for
|
---|
82 | ** the rest) a "date out of range" warning status (JSTAT=+1)
|
---|
83 | ** is returned.
|
---|
84 | **
|
---|
85 | ** 6 The algorithms for (i) Mercury through Neptune and (ii) Pluto
|
---|
86 | ** are completely independent. In the Mercury through Neptune
|
---|
87 | ** case, the present SLALIB C implementation follows the original
|
---|
88 | ** Simon et al Fortran code closely, and delivers essentially
|
---|
89 | ** the same results. The changes are these:
|
---|
90 | **
|
---|
91 | ** * The date is supplied as a Modified Julian Date rather
|
---|
92 | ** than a Julian Date (MJD = JD - 2400000.5).
|
---|
93 | **
|
---|
94 | ** * The result is returned only in equatorial Cartesian form;
|
---|
95 | ** the ecliptic longitude, latitude and radius vector are not
|
---|
96 | ** returned.
|
---|
97 | **
|
---|
98 | ** * The velocity is in AU per second, not AU per day.
|
---|
99 | **
|
---|
100 | ** * Different error/warning status values are used.
|
---|
101 | **
|
---|
102 | ** * Kepler's equation is not solved inline.
|
---|
103 | **
|
---|
104 | ** * Polynomials in T are nested to minimize rounding errors.
|
---|
105 | **
|
---|
106 | ** * Explicit double-precision constants are used to avoid
|
---|
107 | ** mixed-mode expressions.
|
---|
108 | **
|
---|
109 | ** 7 For np=3 the result is for the Earth-Moon Barycentre. To
|
---|
110 | ** obtain the heliocentric position and velocity of the Earth,
|
---|
111 | ** either use the SLALIB routine slaEvp or use slaDmoon and
|
---|
112 | ** subtract 0.012150581 times the geocentric Moon vector from
|
---|
113 | ** the EMB vector produced by the present routine. (The Moon
|
---|
114 | ** vector should be precessed to J2000 first, but this can
|
---|
115 | ** be omitted for modern epochs without introducing significant
|
---|
116 | ** inaccuracy.)
|
---|
117 | **
|
---|
118 | ** References: Simon et al., Astron. Astrophys. 282, 663 (1994).
|
---|
119 | ** Meeus, Astronomical Algorithms, Willmann-Bell (1991).
|
---|
120 | **
|
---|
121 | ** Defined in slamac.h: D2PI, DAS2R, DD2R, dmod
|
---|
122 | **
|
---|
123 | ** Last revision: 27 May 1997
|
---|
124 | **
|
---|
125 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
126 | */
|
---|
127 |
|
---|
128 | /* Gaussian gravitational constant (exact) */
|
---|
129 | #define GCON 0.01720209895
|
---|
130 |
|
---|
131 | /* Canonical days to seconds */
|
---|
132 | #define CD2S ( GCON / 86400.0 )
|
---|
133 |
|
---|
134 | /* Seconds per Julian century */
|
---|
135 | #define SPC ( 36525.0 * 86400.0 )
|
---|
136 |
|
---|
137 | /* Sin and cos of J2000 mean obliquity (IAU 1976) */
|
---|
138 | #define SE 0.3977771559319137
|
---|
139 | #define CE 0.9174820620691818
|
---|
140 |
|
---|
141 | {
|
---|
142 | int ip, i, j;
|
---|
143 | double t, da, de, dpe, di, dom, dmu, arga, argl, dm,
|
---|
144 | dj, ds, dp, wlbr[3], wlbrd[3],
|
---|
145 | wj, ws, wp, al, ald, sal, cal,
|
---|
146 | ac, bc, dl, dld, db, dbd, dr, drd,
|
---|
147 | sl, cl, sb, cb, slcb, clcb, x, y, z, xd, yd, zd;
|
---|
148 |
|
---|
149 | /*
|
---|
150 | ** -----------------------
|
---|
151 | ** Mercury through Neptune
|
---|
152 | ** -----------------------
|
---|
153 | */
|
---|
154 |
|
---|
155 | /* Planetary inverse masses */
|
---|
156 | static double amas[] = {
|
---|
157 | 6023600.0,
|
---|
158 | 408523.5,
|
---|
159 | 328900.5,
|
---|
160 | 3098710.0,
|
---|
161 | 1047.355,
|
---|
162 | 3498.5,
|
---|
163 | 22869.0,
|
---|
164 | 19314.0
|
---|
165 | };
|
---|
166 |
|
---|
167 | /*
|
---|
168 | ** Tables giving the mean Keplerian elements, limited to T^2 terms:
|
---|
169 | **
|
---|
170 | ** a semi-major axis (AU)
|
---|
171 | ** dlm mean longitude (degree and arcsecond)
|
---|
172 | ** e eccentricity
|
---|
173 | ** pi longitude of the perihelion (degree and arcsecond)
|
---|
174 | ** dinc inclination (degree and arcsecond)
|
---|
175 | ** omega longitude of the ascending node (degree and arcsecond)
|
---|
176 | */
|
---|
177 | static double a[8][3] = {
|
---|
178 | { 0.3870983098, 0.0, 0.0 },
|
---|
179 | { 0.7233298200, 0.0, 0.0 },
|
---|
180 | { 1.0000010178, 0.0, 0.0 },
|
---|
181 | { 1.5236793419, 3e-10, 0.0 },
|
---|
182 | { 5.2026032092, 19132e-10, -39e-10 },
|
---|
183 | { 9.5549091915, -0.0000213896, 444e-10 },
|
---|
184 | { 19.2184460618, -3716e-10, 979e-10 },
|
---|
185 | { 30.1103868694, -16635e-10, 686e-10 }
|
---|
186 | };
|
---|
187 | static double dlm[8][3] = {
|
---|
188 | { 252.25090552, 5381016286.88982, -1.92789 },
|
---|
189 | { 181.97980085, 2106641364.33548, 0.59381 },
|
---|
190 | { 100.46645683, 1295977422.83429, -2.04411 },
|
---|
191 | { 355.43299958, 689050774.93988, 0.94264 },
|
---|
192 | { 34.35151874, 109256603.77991, -30.60378 },
|
---|
193 | { 50.07744430, 43996098.55732, 75.61614 },
|
---|
194 | { 314.05500511, 15424811.93933, -1.75083 },
|
---|
195 | { 304.34866548, 7865503.20744, 0.21103 }
|
---|
196 | };
|
---|
197 | static double e[8][3] = {
|
---|
198 | { 0.2056317526, 0.0002040653, -28349e-10 },
|
---|
199 | { 0.0067719164, -0.0004776521, 98127e-10 },
|
---|
200 | { 0.0167086342, -0.0004203654, -0.0000126734 },
|
---|
201 | { 0.0934006477, 0.0009048438, -80641e-10 },
|
---|
202 | { 0.0484979255, 0.0016322542, -0.0000471366 },
|
---|
203 | { 0.0555481426, -0.0034664062, -0.0000643639 },
|
---|
204 | { 0.0463812221, -0.0002729293, 0.0000078913 },
|
---|
205 | { 0.0094557470, 0.0000603263, 0.0 }
|
---|
206 | };
|
---|
207 | static double pi[8][3] = {
|
---|
208 | { 77.45611904, 5719.11590, -4.83016 },
|
---|
209 | { 131.56370300, 175.48640, -498.48184 },
|
---|
210 | { 102.93734808, 11612.35290, 53.27577 },
|
---|
211 | { 336.06023395, 15980.45908, -62.32800 },
|
---|
212 | { 14.33120687, 7758.75163, 259.95938 },
|
---|
213 | { 93.05723748, 20395.49439, 190.25952 },
|
---|
214 | { 173.00529106, 3215.56238, -34.09288 },
|
---|
215 | { 48.12027554, 1050.71912, 27.39717 }
|
---|
216 | };
|
---|
217 | static double dinc[8][3] = {
|
---|
218 | { 7.00498625, -214.25629, 0.28977 },
|
---|
219 | { 3.39466189, -30.84437, -11.67836 },
|
---|
220 | { 0.0, 469.97289, -3.35053 },
|
---|
221 | { 1.84972648, -293.31722, -8.11830 },
|
---|
222 | { 1.30326698, -71.55890, 11.95297 },
|
---|
223 | { 2.48887878, 91.85195, -17.66225 },
|
---|
224 | { 0.77319689, -60.72723, 1.25759 },
|
---|
225 | { 1.76995259, 8.12333, 0.08135 }
|
---|
226 | };
|
---|
227 | static double omega[8][3] = {
|
---|
228 | { 48.33089304, -4515.21727, -31.79892 },
|
---|
229 | { 76.67992019, -10008.48154, -51.32614 },
|
---|
230 | { 174.87317577, -8679.27034, 15.34191 },
|
---|
231 | { 49.55809321, -10620.90088, -230.57416 },
|
---|
232 | { 100.46440702, 6362.03561, 326.52178 },
|
---|
233 | { 113.66550252, -9240.19942, -66.23743 },
|
---|
234 | { 74.00595701, 2669.15033, 145.93964 },
|
---|
235 | { 131.78405702, -221.94322, -0.78728 }
|
---|
236 | };
|
---|
237 |
|
---|
238 | /*
|
---|
239 | ** Tables for trigonometric terms to be added to the mean elements
|
---|
240 | ** of the semi-major axes.
|
---|
241 | */
|
---|
242 | static double dkp[8][9] = {
|
---|
243 | { 69613.0, 75645.0, 88306.0, 59899.0, 15746.0, 71087.0,
|
---|
244 | 142173.0, 3086.0, 0.0 },
|
---|
245 | { 21863.0, 32794.0, 26934.0, 10931.0, 26250.0, 43725.0,
|
---|
246 | 53867.0, 28939.0, 0.0 },
|
---|
247 | { 16002.0, 21863.0, 32004.0, 10931.0, 14529.0, 16368.0,
|
---|
248 | 15318.0, 32794.0, 0.0 },
|
---|
249 | { 6345.0, 7818.0, 15636.0, 7077.0, 8184.0, 14163.0,
|
---|
250 | 1107.0, 4872.0, 0.0 },
|
---|
251 | { 1760.0, 1454.0, 1167.0, 880.0, 287.0, 2640.0,
|
---|
252 | 19.0, 2047.0, 1454.0 },
|
---|
253 | { 574.0, 0.0, 880.0, 287.0, 19.0, 1760.0,
|
---|
254 | 1167.0, 306.0, 574.0 },
|
---|
255 | { 204.0, 0.0, 177.0, 1265.0, 4.0, 385.0,
|
---|
256 | 200.0, 208.0, 204.0 },
|
---|
257 | { 0.0, 102.0, 106.0, 4.0, 98.0, 1367.0,
|
---|
258 | 487.0, 204.0, 0.0 }
|
---|
259 | };
|
---|
260 | static double ca[8][9] = {
|
---|
261 | { 4.0, -13.0, 11.0, -9.0, -9.0, -3.0,
|
---|
262 | -1.0, 4.0, 0.0 },
|
---|
263 | { -156.0, 59.0, -42.0, 6.0, 19.0, -20.0,
|
---|
264 | -10.0, -12.0, 0.0 },
|
---|
265 | { 64.0, -152.0, 62.0, -8.0, 32.0, -41.0,
|
---|
266 | 19.0, -11.0, 0.0 },
|
---|
267 | { 124.0, 621.0, -145.0, 208.0, 54.0, -57.0,
|
---|
268 | 30.0, 15.0, 0.0 },
|
---|
269 | { -23437.0, -2634.0, 6601.0, 6259.0, -1507.0, -1821.0,
|
---|
270 | 2620.0, -2115.0,-1489.0 },
|
---|
271 | { 62911.0,-119919.0, 79336.0, 17814.0,-24241.0, 12068.0,
|
---|
272 | 8306.0, -4893.0, 8902.0 },
|
---|
273 | { 389061.0,-262125.0,-44088.0, 8387.0,-22976.0, -2093.0,
|
---|
274 | -615.0, -9720.0, 6633.0 },
|
---|
275 | { -412235.0,-157046.0,-31430.0, 37817.0, -9740.0, -13.0,
|
---|
276 | -7449.0, 9644.0, 0.0 }
|
---|
277 | };
|
---|
278 | static double sa[8][9] = {
|
---|
279 | { -29.0, -1.0, 9.0, 6.0, -6.0, 5.0,
|
---|
280 | 4.0, 0.0, 0.0 },
|
---|
281 | { -48.0, -125.0, -26.0, -37.0, 18.0, -13.0,
|
---|
282 | -20.0, -2.0, 0.0 },
|
---|
283 | { -150.0, -46.0, 68.0, 54.0, 14.0, 24.0,
|
---|
284 | -28.0, 22.0, 0.0 },
|
---|
285 | { -621.0, 532.0, -694.0, -20.0, 192.0, -94.0,
|
---|
286 | 71.0, -73.0, 0.0 },
|
---|
287 | { -14614.0,-19828.0, -5869.0, 1881.0, -4372.0, -2255.0,
|
---|
288 | 782.0, 930.0, 913.0 },
|
---|
289 | { 139737.0, 0.0, 24667.0, 51123.0, -5102.0, 7429.0,
|
---|
290 | -4095.0, -1976.0,-9566.0 },
|
---|
291 | { -138081.0, 0.0, 37205.0,-49039.0,-41901.0,-33872.0,
|
---|
292 | -27037.0,-12474.0,18797.0 },
|
---|
293 | { 0.0, 28492.0,133236.0, 69654.0, 52322.0,-49577.0,
|
---|
294 | -26430.0, -3593.0, 0.0 }
|
---|
295 | };
|
---|
296 |
|
---|
297 | /*
|
---|
298 | ** Tables giving the trigonometric terms to be added to the mean
|
---|
299 | ** elements of the mean longitudes.
|
---|
300 | */
|
---|
301 | static double dkq[8][10] = {
|
---|
302 | { 3086.0, 15746.0, 69613.0, 59899.0, 75645.0,
|
---|
303 | 88306.0, 12661.0, 2658.0, 0.0, 0.0 },
|
---|
304 | { 21863.0, 32794.0, 10931.0, 73.0, 4387.0,
|
---|
305 | 26934.0, 1473.0, 2157.0, 0.0, 0.0 },
|
---|
306 | { 10.0, 16002.0, 21863.0, 10931.0, 1473.0,
|
---|
307 | 32004.0, 4387.0, 73.0, 0.0, 0.0 },
|
---|
308 | { 10.0, 6345.0, 7818.0, 1107.0, 15636.0,
|
---|
309 | 7077.0, 8184.0, 532.0, 10.0, 0.0 },
|
---|
310 | { 19.0, 1760.0, 1454.0, 287.0, 1167.0,
|
---|
311 | 880.0, 574.0, 2640.0, 19.0,1454.0 },
|
---|
312 | { 19.0, 574.0, 287.0, 306.0, 1760.0,
|
---|
313 | 12.0, 31.0, 38.0, 19.0, 574.0 },
|
---|
314 | { 4.0, 204.0, 177.0, 8.0, 31.0,
|
---|
315 | 200.0, 1265.0, 102.0, 4.0, 204.0 },
|
---|
316 | { 4.0, 102.0, 106.0, 8.0, 98.0,
|
---|
317 | 1367.0, 487.0, 204.0, 4.0, 102.0 }
|
---|
318 | };
|
---|
319 | static double clo[8][10] = {
|
---|
320 | { 21.0, -95.0, -157.0, 41.0, -5.0,
|
---|
321 | 42.0, 23.0, 30.0, 0.0, 0.0 },
|
---|
322 | { -160.0, -313.0, -235.0, 60.0, -74.0,
|
---|
323 | -76.0, -27.0, 34.0, 0.0, 0.0 },
|
---|
324 | { -325.0, -322.0, -79.0, 232.0, -52.0,
|
---|
325 | 97.0, 55.0, -41.0, 0.0, 0.0 },
|
---|
326 | { 2268.0, -979.0, 802.0, 602.0, -668.0,
|
---|
327 | -33.0, 345.0, 201.0, -55.0, 0.0 },
|
---|
328 | { 7610.0, -4997.0, -7689.0, -5841.0, -2617.0,
|
---|
329 | 1115.0, -748.0, -607.0, 6074.0, 354.0 },
|
---|
330 | { -18549.0, 30125.0, 20012.0, -730.0, 824.0,
|
---|
331 | 23.0, 1289.0, -352.0,-14767.0,-2062.0 },
|
---|
332 | { -135245.0, -14594.0, 4197.0, -4030.0, -5630.0,
|
---|
333 | -2898.0, 2540.0, -306.0, 2939.0, 1986.0 },
|
---|
334 | { 89948.0, 2103.0, 8963.0, 2695.0, 3682.0,
|
---|
335 | 1648.0, 866.0, -154.0, -1963.0, -283.0 }
|
---|
336 | };
|
---|
337 | static double slo[8][10] = {
|
---|
338 | { -342.0, 136.0, -23.0, 62.0, 66.0,
|
---|
339 | -52.0, -33.0, 17.0, 0.0, 0.0 },
|
---|
340 | { 524.0, -149.0, -35.0, 117.0, 151.0,
|
---|
341 | 122.0, -71.0, -62.0, 0.0, 0.0 },
|
---|
342 | { -105.0, -137.0, 258.0, 35.0, -116.0,
|
---|
343 | -88.0, -112.0, -80.0, 0.0, 0.0 },
|
---|
344 | { 854.0, -205.0, -936.0, -240.0, 140.0,
|
---|
345 | -341.0, -97.0, -232.0, 536.0, 0.0 },
|
---|
346 | { -56980.0, 8016.0, 1012.0, 1448.0, -3024.0,
|
---|
347 | -3710.0, 318.0, 503.0, 3767.0, 577.0 },
|
---|
348 | { 138606.0, -13478.0, -4964.0, 1441.0, -1319.0,
|
---|
349 | -1482.0, 427.0, 1236.0, -9167.0, -1918.0 },
|
---|
350 | { 71234.0, -41116.0, 5334.0, -4935.0, -1848.0,
|
---|
351 | 66.0, 434.0, -1748.0, 3780.0, -701.0 },
|
---|
352 | { -47645.0, 11647.0, 2166.0, 3194.0, 679.0,
|
---|
353 | 0.0, -244.0, -419.0, -2531.0, 48.0 }
|
---|
354 | };
|
---|
355 |
|
---|
356 | /*
|
---|
357 | ** -----
|
---|
358 | ** Pluto
|
---|
359 | ** -----
|
---|
360 | */
|
---|
361 |
|
---|
362 | /*
|
---|
363 | ** Coefficients for fundamental arguments: mean longitudes (degrees)
|
---|
364 | ** and mean rate of change of longitude (degrees per Julian century)
|
---|
365 | ** for Jupiter, Saturn and Pluto
|
---|
366 | */
|
---|
367 | static double dj0 = 34.35, djd = 3034.9057,
|
---|
368 | ds0 = 50.08, dsd = 1222.1138,
|
---|
369 | dp0 = 238.96, dpd = 144.9600;
|
---|
370 |
|
---|
371 | /* Coefficients for latitude, longitude, radius vector */
|
---|
372 | static double dl0 = 238.956785, dld0 = 144.96,
|
---|
373 | db0 = -3.908202,
|
---|
374 | dr0 = 40.7247248;
|
---|
375 |
|
---|
376 | /*
|
---|
377 | ** Coefficients for periodic terms (Meeus's Table 36.A)
|
---|
378 | */
|
---|
379 | struct ab {
|
---|
380 | double a; /* sine component */
|
---|
381 | double b; /* cosine component */
|
---|
382 | };
|
---|
383 | struct tm {
|
---|
384 | int ij; /* Jupiter contribution to argument */
|
---|
385 | int is; /* Saturn contribution to argument */
|
---|
386 | int ip; /* Pluto contribution to argument */
|
---|
387 | struct ab dlbr[3]; /* longitude (degrees),
|
---|
388 | latitude (degrees),
|
---|
389 | radius vector (AU) */
|
---|
390 | };
|
---|
391 | static struct tm term[] = {
|
---|
392 |
|
---|
393 | /* 1 */ { 0, 0, 1, { { -19798886e-6, 19848454e-6 },
|
---|
394 | { -5453098e-6, -14974876e-6 },
|
---|
395 | { 66867334e-7, 68955876e-7 } } },
|
---|
396 | /* 2 */ { 0, 0, 2, { { 897499e-6, -4955707e-6 },
|
---|
397 | { 3527363e-6, 1672673e-6 },
|
---|
398 | { -11826086e-7, -333765e-7 } } },
|
---|
399 | /* 3 */ { 0, 0, 3, { { 610820e-6, 1210521e-6 },
|
---|
400 | { -1050939e-6, 327763e-6 },
|
---|
401 | { 1593657e-7, -1439953e-7 } } },
|
---|
402 | /* 4 */ { 0, 0, 4, { { -341639e-6, -189719e-6 },
|
---|
403 | { 178691e-6, -291925e-6 },
|
---|
404 | { -18948e-7, 482443e-7 } } },
|
---|
405 | /* 5 */ { 0, 0, 5, { { 129027e-6, -34863e-6 },
|
---|
406 | { 18763e-6, 100448e-6 },
|
---|
407 | { -66634e-7, -85576e-7 } } },
|
---|
408 | /* 6 */ { 0, 0, 6, { { -38215e-6, 31061e-6 },
|
---|
409 | { -30594e-6, -25838e-6 },
|
---|
410 | { 30841e-7, -5765e-7 } } },
|
---|
411 | /* 7 */ { 0, 1, -1, { { 20349e-6, -9886e-6 },
|
---|
412 | { 4965e-6, 11263e-6 },
|
---|
413 | { -6140e-7, 22254e-7 } } },
|
---|
414 | /* 8 */ { 0, 1, 0, { { -4045e-6, -4904e-6 },
|
---|
415 | { 310e-6, -132e-6 },
|
---|
416 | { 4434e-7, 4443e-7 } } },
|
---|
417 | /* 9 */ { 0, 1, 1, { { -5885e-6, -3238e-6 },
|
---|
418 | { 2036e-6, -947e-6 },
|
---|
419 | { -1518e-7, 641e-7 } } },
|
---|
420 | /* 10 */ { 0, 1, 2, { { -3812e-6, 3011e-6 },
|
---|
421 | { -2e-6, -674e-6 },
|
---|
422 | { -5e-7, 792e-7 } } },
|
---|
423 | /* 11 */ { 0, 1, 3, { { -601e-6, 3468e-6 },
|
---|
424 | { -329e-6, -563e-6 },
|
---|
425 | { 518e-7, 518e-7 } } },
|
---|
426 | /* 12 */ { 0, 2, -2, { { 1237e-6, 463e-6 },
|
---|
427 | { -64e-6, 39e-6 },
|
---|
428 | { -13e-7, -221e-7 } } },
|
---|
429 | /* 13 */ { 0, 2, -1, { { 1086e-6, -911e-6 },
|
---|
430 | { -94e-6, 210e-6 },
|
---|
431 | { 837e-7, -494e-7 } } },
|
---|
432 | /* 14 */ { 0, 2, 0, { { 595e-6, -1229e-6 },
|
---|
433 | { -8e-6, -160e-6 },
|
---|
434 | { -281e-7, 616e-7 } } },
|
---|
435 | /* 15 */ { 1, -1, 0, { { 2484e-6, -485e-6 },
|
---|
436 | { -177e-6, 259e-6 },
|
---|
437 | { 260e-7, -395e-7 } } },
|
---|
438 | /* 16 */ { 1, -1, 1, { { 839e-6, -1414e-6 },
|
---|
439 | { 17e-6, 234e-6 },
|
---|
440 | { -191e-7, -396e-7 } } },
|
---|
441 | /* 17 */ { 1, 0, -3, { { -964e-6, 1059e-6 },
|
---|
442 | { 582e-6, -285e-6 },
|
---|
443 | { -3218e-7, 370e-7 } } },
|
---|
444 | /* 18 */ { 1, 0, -2, { { -2303e-6, -1038e-6 },
|
---|
445 | { -298e-6, 692e-6 },
|
---|
446 | { 8019e-7, -7869e-7 } } },
|
---|
447 | /* 19 */ { 1, 0, -1, { { 7049e-6, 747e-6 },
|
---|
448 | { 157e-6, 201e-6 },
|
---|
449 | { 105e-7, 45637e-7 } } },
|
---|
450 | /* 20 */ { 1, 0, 0, { { 1179e-6, -358e-6 },
|
---|
451 | { 304e-6, 825e-6 },
|
---|
452 | { 8623e-7, 8444e-7 } } },
|
---|
453 | /* 21 */ { 1, 0, 1, { { 393e-6, -63e-6 },
|
---|
454 | { -124e-6, -29e-6 },
|
---|
455 | { -896e-7, -801e-7 } } },
|
---|
456 | /* 22 */ { 1, 0, 2, { { 111e-6, -268e-6 },
|
---|
457 | { 15e-6, 8e-6 },
|
---|
458 | { 208e-7, -122e-7 } } },
|
---|
459 | /* 23 */ { 1, 0, 3, { { -52e-6, -154e-6 },
|
---|
460 | { 7e-6, 15e-6 },
|
---|
461 | { -133e-7, 65e-7 } } },
|
---|
462 | /* 24 */ { 1, 0, 4, { { -78e-6, -30e-6 },
|
---|
463 | { 2e-6, 2e-6 },
|
---|
464 | { -16e-7, 1e-7 } } },
|
---|
465 | /* 25 */ { 1, 1, -3, { { -34e-6, -26e-6 },
|
---|
466 | { 4e-6, 2e-6 },
|
---|
467 | { -22e-7, 7e-7 } } },
|
---|
468 | /* 26 */ { 1, 1, -2, { { -43e-6, 1e-6 },
|
---|
469 | { 3e-6, 0e-6 },
|
---|
470 | { -8e-7, 16e-7 } } },
|
---|
471 | /* 27 */ { 1, 1, -1, { { -15e-6, 21e-6 },
|
---|
472 | { 1e-6, -1e-6 },
|
---|
473 | { 2e-7, 9e-7 } } },
|
---|
474 | /* 28 */ { 1, 1, 0, { { -1e-6, 15e-6 },
|
---|
475 | { 0e-6, -2e-6 },
|
---|
476 | { 12e-7, 5e-7 } } },
|
---|
477 | /* 29 */ { 1, 1, 1, { { 4e-6, 7e-6 },
|
---|
478 | { 1e-6, 0e-6 },
|
---|
479 | { 1e-7, -3e-7 } } },
|
---|
480 | /* 30 */ { 1, 1, 3, { { 1e-6, 5e-6 },
|
---|
481 | { 1e-6, -1e-6 },
|
---|
482 | { 1e-7, 0e-7 } } },
|
---|
483 | /* 31 */ { 2, 0, -6, { { 8e-6, 3e-6 },
|
---|
484 | { -2e-6, -3e-6 },
|
---|
485 | { 9e-7, 5e-7 } } },
|
---|
486 | /* 32 */ { 2, 0, -5, { { -3e-6, 6e-6 },
|
---|
487 | { 1e-6, 2e-6 },
|
---|
488 | { 2e-7, -1e-7 } } },
|
---|
489 | /* 33 */ { 2, 0, -4, { { 6e-6, -13e-6 },
|
---|
490 | { -8e-6, 2e-6 },
|
---|
491 | { 14e-7, 10e-7 } } },
|
---|
492 | /* 34 */ { 2, 0, -3, { { 10e-6, 22e-6 },
|
---|
493 | { 10e-6, -7e-6 },
|
---|
494 | { -65e-7, 12e-7 } } },
|
---|
495 | /* 35 */ { 2, 0, -2, { { -57e-6, -32e-6 },
|
---|
496 | { 0e-6, 21e-6 },
|
---|
497 | { 126e-7, -233e-7 } } },
|
---|
498 | /* 36 */ { 2, 0, -1, { { 157e-6, -46e-6 },
|
---|
499 | { 8e-6, 5e-6 },
|
---|
500 | { 270e-7, 1068e-7 } } },
|
---|
501 | /* 37 */ { 2, 0, 0, { { 12e-6, -18e-6 },
|
---|
502 | { 13e-6, 16e-6 },
|
---|
503 | { 254e-7, 155e-7 } } },
|
---|
504 | /* 38 */ { 2, 0, 1, { { -4e-6, 8e-6 },
|
---|
505 | { -2e-6, -3e-6 },
|
---|
506 | { -26e-7, -2e-7 } } },
|
---|
507 | /* 39 */ { 2, 0, 2, { { -5e-6, 0e-6 },
|
---|
508 | { 0e-6, 0e-6 },
|
---|
509 | { 7e-7, 0e-7 } } },
|
---|
510 | /* 40 */ { 2, 0, 3, { { 3e-6, 4e-6 },
|
---|
511 | { 0e-6, 1e-6 },
|
---|
512 | { -11e-7, 4e-7 } } },
|
---|
513 | /* 41 */ { 3, 0, -2, { { -1e-6, -1e-6 },
|
---|
514 | { 0e-6, 1e-6 },
|
---|
515 | { 4e-7, -14e-7 } } },
|
---|
516 | /* 42 */ { 3, 0, -1, { { 6e-6, -3e-6 },
|
---|
517 | { 0e-6, 0e-6 },
|
---|
518 | { 18e-7, 35e-7 } } },
|
---|
519 | /* 43 */ { 3, 0, 0, { { -1e-6, -2e-6 },
|
---|
520 | { 0e-6, 1e-6 },
|
---|
521 | { 13e-7, 3e-7 } } } };
|
---|
522 |
|
---|
523 |
|
---|
524 |
|
---|
525 | /* Validate the planet number. */
|
---|
526 | if ( np < 1 || np > 9 ) {
|
---|
527 | *jstat = -1;
|
---|
528 | for ( i = 0; i <= 5; i++ ) pv[i] = 0.0;
|
---|
529 | return;
|
---|
530 | } else {
|
---|
531 | ip = np - 1;
|
---|
532 | }
|
---|
533 |
|
---|
534 | /* Separate algorithms for Pluto and the rest. */
|
---|
535 | if ( np != 9 ) {
|
---|
536 |
|
---|
537 | /* ----------------------- */
|
---|
538 | /* Mercury through Neptune */
|
---|
539 | /* ----------------------- */
|
---|
540 |
|
---|
541 | /* Time: Julian millennia since J2000. */
|
---|
542 | t = ( date - 51544.5 ) / 365250.0;
|
---|
543 |
|
---|
544 | /* OK status unless remote epoch. */
|
---|
545 | *jstat = ( fabs ( t ) <= 1.0 ) ? 0 : 1;
|
---|
546 |
|
---|
547 | /* Compute the mean elements. */
|
---|
548 | da = a[ip][0] + ( a[ip][1] + a[ip][2] * t ) * t;
|
---|
549 | dl = ( 3600.0 * dlm[ip][0] + ( dlm[ip][1] + dlm[ip][2] * t ) * t )
|
---|
550 | * DAS2R;
|
---|
551 | de = e[ip][0] + ( e[ip][1] + e[ip][2] * t ) * t;
|
---|
552 | dpe = dmod ( ( 3600.0 * pi[ip][0] + ( pi[ip][1] + pi[ip][2] * t ) * t )
|
---|
553 | * DAS2R,D2PI );
|
---|
554 | di = ( 3600.0 * dinc[ip][0] + ( dinc[ip][1] + dinc[ip][2] * t ) * t )
|
---|
555 | * DAS2R;
|
---|
556 | dom = dmod( ( 3600.0 * omega[ip][0] + ( omega[ip][1]
|
---|
557 | + omega[ip][2] * t ) * t ) * DAS2R, D2PI );
|
---|
558 |
|
---|
559 | /* Apply the trigonometric terms. */
|
---|
560 | dmu = 0.35953620 * t;
|
---|
561 | for ( j = 0; j <= 7; j++ ) {
|
---|
562 | arga = dkp[ip][j] * dmu;
|
---|
563 | argl = dkq[ip][j] * dmu;
|
---|
564 | da += ( ca[ip][j] * cos ( arga ) +
|
---|
565 | sa[ip][j] * sin ( arga ) ) * 1e-7;
|
---|
566 | dl += ( clo[ip][j] * cos ( argl ) +
|
---|
567 | slo[ip][j] * sin ( argl ) ) * 1e-7;
|
---|
568 | }
|
---|
569 | arga = dkp[ip][8] * dmu;
|
---|
570 | da += t * ( ca[ip][8] * cos ( arga ) +
|
---|
571 | sa[ip][8] * sin ( arga ) ) * 1e-7;
|
---|
572 | for ( j = 8; j <= 9; j++ ) {
|
---|
573 | argl = dkq[ip][j] * dmu;
|
---|
574 | dl += t * ( clo[ip][j] * cos ( argl ) +
|
---|
575 | slo[ip][j] * sin ( argl ) ) * 1e-7;
|
---|
576 | }
|
---|
577 | dl = dmod ( dl, D2PI );
|
---|
578 |
|
---|
579 | /* Daily motion. */
|
---|
580 | dm = GCON * sqrt ( ( 1.0 + 1.0 / amas[ip] ) / ( da * da * da ) );
|
---|
581 |
|
---|
582 | /* Make the prediction. */
|
---|
583 | slaPlanel ( date, 1, date, di, dom, dpe, da, de, dl, dm, pv, &j );
|
---|
584 | if ( j < 0 ) *jstat = -2;
|
---|
585 |
|
---|
586 |
|
---|
587 | } else {
|
---|
588 |
|
---|
589 | /* ----- */
|
---|
590 | /* Pluto */
|
---|
591 | /* ----- */
|
---|
592 |
|
---|
593 | /* Time: Julian centuries since J2000. */
|
---|
594 | t = ( date - 51544.5 ) / 36525.0;
|
---|
595 |
|
---|
596 | /* OK status unless remote epoch. */
|
---|
597 | *jstat = t >= -1.15 && t <= 1.0 ? 0 : -1;
|
---|
598 |
|
---|
599 | /* Fundamental arguments (radians). */
|
---|
600 | dj = ( dj0 + djd * t ) * DD2R;
|
---|
601 | ds = ( ds0 + dsd * t ) * DD2R;
|
---|
602 | dp = ( dp0 + dpd * t ) * DD2R;
|
---|
603 |
|
---|
604 | /* Initialize coefficients and derivatives. */
|
---|
605 | for ( i = 0; i < 3; i++ ) {
|
---|
606 | wlbr[i] = 0.0;
|
---|
607 | wlbrd[i] = 0.0;
|
---|
608 | }
|
---|
609 |
|
---|
610 | /* Term by term through Meeus Table 36.A. */
|
---|
611 | for ( j = 0; j < ( sizeof term / sizeof term[0] ); j++ ) {
|
---|
612 |
|
---|
613 | /* Argument and derivative (radians, radians per century). */
|
---|
614 | wj = (double) ( term[j].ij );
|
---|
615 | ws = (double) ( term[j].is );
|
---|
616 | wp = (double) ( term[j].ip );
|
---|
617 | al = wj * dj + ws * ds + wp * dp;
|
---|
618 | ald = ( wj * djd + ws * dsd + wp * dpd ) * DD2R;
|
---|
619 |
|
---|
620 | /* Functions of argument. */
|
---|
621 | sal = sin ( al );
|
---|
622 | cal = cos ( al );
|
---|
623 |
|
---|
624 | /* Periodic terms in longitude, latitude, radius vector. */
|
---|
625 | for ( i = 0; i < 3; i++ ) {
|
---|
626 |
|
---|
627 | /* A and B coefficients (deg, AU). */
|
---|
628 | ac = term[j].dlbr[i].a;
|
---|
629 | bc = term[j].dlbr[i].b;
|
---|
630 |
|
---|
631 | /* Periodic terms (deg, AU, deg/Jc, AU/Jc). */
|
---|
632 | wlbr[i] = wlbr[i] + ac * sal + bc * cal;
|
---|
633 | wlbrd[i] = wlbrd[i] + ( ac * cal - bc * sal ) * ald;
|
---|
634 | }
|
---|
635 | }
|
---|
636 |
|
---|
637 | /* Heliocentric longitude and derivative (radians, radians/sec). */
|
---|
638 | dl = ( dl0 + dld0 * t + wlbr[0] ) * DD2R;
|
---|
639 | dld = ( dld0 + wlbrd[0] ) * DD2R / SPC;
|
---|
640 |
|
---|
641 | /* Heliocentric latitude and derivative (radians, radians/sec). */
|
---|
642 | db = ( db0 + wlbr[1] ) * DD2R;
|
---|
643 | dbd = wlbrd[1] * DD2R / SPC;
|
---|
644 |
|
---|
645 | /* Heliocentric radius vector and derivative (AU, AU/sec). */
|
---|
646 | dr = dr0 + wlbr[2];
|
---|
647 | drd = wlbrd[2] / SPC;
|
---|
648 |
|
---|
649 | /* Functions of latitude, longitude, radius vector. */
|
---|
650 | sl = sin ( dl );
|
---|
651 | cl = cos ( dl );
|
---|
652 | sb = sin ( db );
|
---|
653 | cb = cos ( db );
|
---|
654 | slcb = sl * cb;
|
---|
655 | clcb = cl * cb;
|
---|
656 |
|
---|
657 | /* Heliocentric vector and derivative, J2000 ecliptic and equinox. */
|
---|
658 | x = dr * clcb;
|
---|
659 | y = dr * slcb;
|
---|
660 | z = dr * sb;
|
---|
661 | xd = drd * clcb - dr * ( cl * sb * dbd + slcb * dld );
|
---|
662 | yd = drd * slcb + dr * ( - sl * sb * dbd + clcb * dld );
|
---|
663 | zd = drd * sb + dr * cb * dbd;
|
---|
664 |
|
---|
665 | /* Transform to J2000 equator and equinox. */
|
---|
666 | pv[0] = x;
|
---|
667 | pv[1] = y * CE - z * SE;
|
---|
668 | pv[2] = y * SE + z * CE;
|
---|
669 | pv[3] = xd;
|
---|
670 | pv[4] = yd * CE - zd * SE;
|
---|
671 | pv[5] = yd * SE + zd * CE;
|
---|
672 | }
|
---|
673 | }
|
---|