1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaRefcoq ( double tdk, double pmb, double rh, double wl,
|
---|
4 | double *refa, double *refb )
|
---|
5 | /*
|
---|
6 | ** - - - - - - - - - -
|
---|
7 | ** s l a R e f c o q
|
---|
8 | ** - - - - - - - - - -
|
---|
9 | **
|
---|
10 | ** Determine the constants A and B in the atmospheric refraction
|
---|
11 | ** model dZ = A tan Z + B tan^3 Z. This is a fast alternative
|
---|
12 | ** to the slaRefco routine - see notes.
|
---|
13 | **
|
---|
14 | ** Z is the "observed" zenith distance (i.e. affected by refraction)
|
---|
15 | ** and dZ is what to add to Z to give the "topocentric" (i.e. in vacuo)
|
---|
16 | ** zenith distance.
|
---|
17 | **
|
---|
18 | ** Given:
|
---|
19 | ** tdk double ambient temperature at the observer (deg K)
|
---|
20 | ** pmb double pressure at the observer (millibar)
|
---|
21 | ** rh double relative humidity at the observer (range 0-1)
|
---|
22 | ** wl double effective wavelength of the source (micrometre)
|
---|
23 | **
|
---|
24 | ** Returned:
|
---|
25 | ** refa double* tan Z coefficient (radian)
|
---|
26 | ** refb double* tan^3 Z coefficient (radian)
|
---|
27 | **
|
---|
28 | ** The radio refraction is chosen by specifying WL > 100 micrometres.
|
---|
29 | **
|
---|
30 | ** Notes:
|
---|
31 | **
|
---|
32 | ** 1 The model is an approximation, for moderate zenith distances,
|
---|
33 | ** to the predictions of the slaRefro routine. The approximation
|
---|
34 | ** is maintained across a range of conditions, and applies to
|
---|
35 | ** both optical/IR and radio.
|
---|
36 | **
|
---|
37 | ** 2 The algorithm is a fast alternative to the slaRefco routine.
|
---|
38 | ** The latter calls the slaRefro routine itself: this involves
|
---|
39 | ** integrations through a model atmosphere, and is costly in
|
---|
40 | ** processor time. However, the model which is produced is precisely
|
---|
41 | ** correct for two zenith distance (45 degrees and about 76 degrees)
|
---|
42 | ** and at other zenith distances is limited in accuracy only by the
|
---|
43 | ** A tan Z + B tan^3 Z formulation itself. The present routine
|
---|
44 | ** is not as accurate, though it satisfies most practical
|
---|
45 | ** requirements.
|
---|
46 | **
|
---|
47 | ** 3 The model omits the effects of (i) height above sea level (apart
|
---|
48 | ** from the reduced pressure itself), (ii) latitude (i.e. the
|
---|
49 | ** flattening of the Earth) and (iii) variations in tropospheric
|
---|
50 | ** lapse rate.
|
---|
51 | **
|
---|
52 | ** The model was tested using the following range of conditions:
|
---|
53 | **
|
---|
54 | ** lapse rates 0.0055, 0.0065, 0.0075 deg/metre
|
---|
55 | ** latitudes 0, 25, 50, 75 degrees
|
---|
56 | ** heights 0, 2500, 5000 metres ASL
|
---|
57 | ** pressures mean for height -10% to +5% in steps of 5%
|
---|
58 | ** temperatures -10 deg to +20 deg with respect to 280 deg at SL
|
---|
59 | ** relative humidity 0, 0.5, 1
|
---|
60 | ** wavelengths 0.4, 0.6, ... 2 micron, + radio
|
---|
61 | ** zenith distances 15, 45, 75 degrees
|
---|
62 | **
|
---|
63 | ** The accuracy with respect to direct use of the slaRefro routine
|
---|
64 | ** was as follows:
|
---|
65 | **
|
---|
66 | ** worst RMS
|
---|
67 | **
|
---|
68 | ** optical/IR 62 mas 8 mas
|
---|
69 | ** radio 319 mas 49 mas
|
---|
70 | **
|
---|
71 | ** For this particular set of conditions:
|
---|
72 | **
|
---|
73 | ** lapse rate 0.0065 degK/metre
|
---|
74 | ** latitude 50 degrees
|
---|
75 | ** sea level
|
---|
76 | ** pressure 1005 mB
|
---|
77 | ** temperature 280.15 degK
|
---|
78 | ** humidity 80%
|
---|
79 | ** wavelength 5740 Angstroms
|
---|
80 | **
|
---|
81 | ** the results were as follows:
|
---|
82 | **
|
---|
83 | ** ZD slaRefro slaRefcoq Saastamoinen
|
---|
84 | **
|
---|
85 | ** 10 10.27 10.27 10.27
|
---|
86 | ** 20 21.19 21.20 21.19
|
---|
87 | ** 30 33.61 33.61 33.60
|
---|
88 | ** 40 48.82 48.83 48.81
|
---|
89 | ** 45 58.16 58.18 58.16
|
---|
90 | ** 50 69.28 69.30 69.27
|
---|
91 | ** 55 82.97 82.99 82.95
|
---|
92 | ** 60 100.51 100.54 100.50
|
---|
93 | ** 65 124.23 124.26 124.20
|
---|
94 | ** 70 158.63 158.68 158.61
|
---|
95 | ** 72 177.32 177.37 177.31
|
---|
96 | ** 74 200.35 200.38 200.32
|
---|
97 | ** 76 229.45 229.43 229.42
|
---|
98 | ** 78 267.44 267.29 267.41
|
---|
99 | ** 80 319.13 318.55 319.10
|
---|
100 | **
|
---|
101 | ** deg arcsec arcsec arcsec
|
---|
102 | **
|
---|
103 | ** The values for Saastamoinen's formula (which includes terms
|
---|
104 | ** up to tan^5) are taken from Hohenkerk and Sinclair (1985).
|
---|
105 | **
|
---|
106 | ** The results from the much slower but more accurate slaRefco
|
---|
107 | ** routine have not been included in the tabulation as they are
|
---|
108 | ** identical to those in the slaRefro column to the 0.01 arcsec
|
---|
109 | ** resolution used.
|
---|
110 | **
|
---|
111 | ** 4 Outlandish input parameters are silently limited to mathematically
|
---|
112 | ** safe values. Zero pressure is permissible, and causes zeroes to
|
---|
113 | ** be returned.
|
---|
114 | **
|
---|
115 | ** 5 The algorithm draws on several sources, as follows:
|
---|
116 | **
|
---|
117 | ** a) The formula for the saturation vapour pressure of water as
|
---|
118 | ** a function of temperature and temperature is taken from
|
---|
119 | ** expressions A4.5-A4.7 of Gill (1982).
|
---|
120 | **
|
---|
121 | ** b) The formula for the water vapour pressure, Given the
|
---|
122 | ** saturation pressure and the relative humidity, is from
|
---|
123 | ** Crane (1976), expression 2.5.5.
|
---|
124 | **
|
---|
125 | ** c) The refractivity of air is a function of temperature,
|
---|
126 | ** total pressure, water-vapour pressure and, in the case
|
---|
127 | ** of optical/IR but not radio, wavelength. The formulae
|
---|
128 | ** for the two cases are developed from the Essen and Froome
|
---|
129 | ** expressions adopted in Resolution 1 of the 12th International
|
---|
130 | ** Geodesy Association General Assembly (1963).
|
---|
131 | **
|
---|
132 | ** The above three items are as used in the slaRefro routine.
|
---|
133 | **
|
---|
134 | ** d) The formula for beta, the ratio of the scale height of the
|
---|
135 | ** atmosphere to the geocentric distance of the observer, is
|
---|
136 | ** an adaption of expression 9 from Stone (1996). The
|
---|
137 | ** adaptations, arrived at empirically, consist of (i) a
|
---|
138 | ** small adjustment to the coefficient and (ii) a humidity
|
---|
139 | ** term for the radio case only.
|
---|
140 | **
|
---|
141 | ** e) The formulae for the refraction constants as a function of
|
---|
142 | ** n-1 and beta are from Green (1987), expression 4.31.
|
---|
143 | **
|
---|
144 | ** References:
|
---|
145 | **
|
---|
146 | ** Crane, R.K., Meeks, M.L. (ed), "Refraction Effects in the Neutral
|
---|
147 | ** Atmosphere", Methods of Experimental Physics: Astrophysics 12B,
|
---|
148 | ** Academic Press, 1976.
|
---|
149 | **
|
---|
150 | ** Gill, Adrian E., "Atmosphere-Ocean Dynamics", Academic Press, 1982.
|
---|
151 | **
|
---|
152 | ** Hohenkerk, C.Y., & Sinclair, A.T., NAO Technical Note No. 63, 1985.
|
---|
153 | **
|
---|
154 | ** International Geodesy Association General Assembly, Bulletin
|
---|
155 | ** Geodesique 70 p390, 1963.
|
---|
156 | **
|
---|
157 | ** Stone, Ronald C., P.A.S.P. 108 1051-1058, 1996.
|
---|
158 | **
|
---|
159 | ** Green, R.M., "Spherical Astronomy", Cambridge University Press, 1987.
|
---|
160 | **
|
---|
161 | ** Last revision: 17 March 1999
|
---|
162 | **
|
---|
163 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
164 | */
|
---|
165 | {
|
---|
166 | int optic;
|
---|
167 | double t, p, r,w, tdc, ps, pw, wlsq, gamma, beta;
|
---|
168 |
|
---|
169 |
|
---|
170 | /* Decide whether optical/IR or radio case: switch at 100 microns. */
|
---|
171 | optic = ( wl <= 100.0 );
|
---|
172 |
|
---|
173 | /* Restrict parameters to safe values. */
|
---|
174 | t = gmax ( tdk, 100.0 );
|
---|
175 | t = gmin ( t, 500.0 );
|
---|
176 | p = gmax ( pmb, 0.0 );
|
---|
177 | p = gmin ( p, 10000.0 );
|
---|
178 | r = gmax ( rh, 0.0 );
|
---|
179 | r = gmin ( r, 1.0 );
|
---|
180 | w = gmax ( wl, 0.1 );
|
---|
181 | w = gmin ( w, 1e6 );
|
---|
182 |
|
---|
183 | /* Water vapour pressure at the observer. */
|
---|
184 | if ( p > 0.0 ) {
|
---|
185 | tdc = t - 273.15;
|
---|
186 | ps = pow ( 10.0, ( 0.7859 + 0.03477 * tdc ) /
|
---|
187 | ( 1.0 + 0.00412 * tdc ) ) *
|
---|
188 | ( 1.0 + p * ( 4.5e-6 + 6e-10 * tdc * tdc ) );
|
---|
189 | pw = r * ps / ( 1.0 - ( 1.0 - r ) * ps / p );
|
---|
190 | } else {
|
---|
191 | pw = 0.0;
|
---|
192 | }
|
---|
193 |
|
---|
194 | /* Refractive index minus 1 at the observer. */
|
---|
195 | if ( optic ) {
|
---|
196 | wlsq = wl * wl;
|
---|
197 | gamma = ( ( 77.532e-6 + ( 4.391e-7 + 3.57e-9 / wlsq ) / wlsq ) * p
|
---|
198 | - 11.2684e-6 * pw ) / t;
|
---|
199 | } else {
|
---|
200 | gamma = ( 77.624e-6 * p - ( 12.92e-6 - 0.371897 / t ) * pw ) / t;
|
---|
201 | }
|
---|
202 |
|
---|
203 | /* Formula for beta from Stone, with empirical adjustments. */
|
---|
204 | beta = 4.4474e-6 * t;
|
---|
205 | if ( !optic ) beta -= 0.0074 * pw * beta;
|
---|
206 |
|
---|
207 | /* Refraction constants from Green. */
|
---|
208 | *refa = gamma * ( 1.0 - beta );
|
---|
209 | *refb = - gamma * ( beta - gamma / 2.0 );
|
---|
210 | }
|
---|