1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | float slaRvlsrk ( float r2000, float d2000 )
|
---|
4 | /*
|
---|
5 | ** - - - - - - - - - -
|
---|
6 | ** s l a R v l s r k
|
---|
7 | ** - - - - - - - - - -
|
---|
8 | **
|
---|
9 | ** Velocity component in a given direction due to the Sun's motion
|
---|
10 | ** with respect to an adopted kinematic Local Standard of Rest.
|
---|
11 | **
|
---|
12 | ** (single precision)
|
---|
13 | **
|
---|
14 | ** Given:
|
---|
15 | ** r2000,d2000 float J2000.0 mean RA,Dec (radians)
|
---|
16 | **
|
---|
17 | ** Result:
|
---|
18 | ** Component of "standard" solar motion in direction R2000,D2000 (km/s)
|
---|
19 | **
|
---|
20 | ** Sign convention:
|
---|
21 | ** The result is +ve when the Sun is receding from the given point on
|
---|
22 | ** the sky.
|
---|
23 | **
|
---|
24 | ** Note: The Local Standard of Rest used here is one of several
|
---|
25 | ** "kinematical" LSRs in common use. A kinematical LSR is the
|
---|
26 | ** mean standard of rest of specified star catalogues or stellar
|
---|
27 | ** populations. The Sun's motion with respect to a kinematical
|
---|
28 | ** LSR is known as the "standard" solar motion.
|
---|
29 | **
|
---|
30 | ** There is another sort of LSR, the "dynamical" LSR, which is a
|
---|
31 | ** point in the vicinity of the Sun which is in a circular orbit
|
---|
32 | ** around the Galactic centre. The Sun's motion with respect to
|
---|
33 | ** the dynamical LSR is called the "peculiar" solar motion. To
|
---|
34 | ** obtain a radial velocity correction with respect to the
|
---|
35 | ** dynamical LSR use the routine slaRvlsrd.
|
---|
36 | **
|
---|
37 | ** Reference: Delhaye (1965), in "Stars and Stellar Systems", vol 5, p73.
|
---|
38 | **
|
---|
39 | ** Called: slaCs2c, slaVdv
|
---|
40 | **
|
---|
41 | ** Last revision: 27 November 1994
|
---|
42 | **
|
---|
43 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
44 | */
|
---|
45 | {
|
---|
46 | /*
|
---|
47 | **
|
---|
48 | ** Standard solar motion (from Methods of Experimental Physics, ed Meeks,
|
---|
49 | ** vol 12, part C, sec 6.1.5.2, p281):
|
---|
50 | **
|
---|
51 | ** 20 km/s towards RA 18h Dec +30d (1900).
|
---|
52 | **
|
---|
53 | ** The solar motion is expressed here in the form of a J2000.0
|
---|
54 | ** equatorial Cartesian vector:
|
---|
55 | **
|
---|
56 | ** va(1) = x = -speed*cos(ra)*cos(dec)
|
---|
57 | ** va(2) = y = -speed*sin(ra)*cos(dec)
|
---|
58 | ** va(3) = z = -speed*sin(dec)
|
---|
59 | */
|
---|
60 | static float va[3] = { -0.29000f, 17.31726f, -10.00141f };
|
---|
61 | float vb[3];
|
---|
62 |
|
---|
63 | /* Convert given J2000 RA,dec to x,y,z */
|
---|
64 | slaCs2c ( r2000, d2000, vb );
|
---|
65 |
|
---|
66 | /* Compute dot product with solar motion vector */
|
---|
67 | return slaVdv ( va, vb );
|
---|
68 | }
|
---|