| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | float slaRvlsrk ( float r2000, float d2000 ) | 
|---|
| 4 | /* | 
|---|
| 5 | **  - - - - - - - - - - | 
|---|
| 6 | **   s l a R v l s r k | 
|---|
| 7 | **  - - - - - - - - - - | 
|---|
| 8 | ** | 
|---|
| 9 | **  Velocity component in a given direction due to the Sun's motion | 
|---|
| 10 | **  with respect to an adopted kinematic Local Standard of Rest. | 
|---|
| 11 | ** | 
|---|
| 12 | **  (single precision) | 
|---|
| 13 | ** | 
|---|
| 14 | **  Given: | 
|---|
| 15 | **     r2000,d2000   float    J2000.0 mean RA,Dec (radians) | 
|---|
| 16 | ** | 
|---|
| 17 | **  Result: | 
|---|
| 18 | **     Component of "standard" solar motion in direction R2000,D2000 (km/s) | 
|---|
| 19 | ** | 
|---|
| 20 | **  Sign convention: | 
|---|
| 21 | **     The result is +ve when the Sun is receding from the given point on | 
|---|
| 22 | **     the sky. | 
|---|
| 23 | ** | 
|---|
| 24 | **  Note:  The Local Standard of Rest used here is one of several | 
|---|
| 25 | **         "kinematical" LSRs in common use.  A kinematical LSR is the | 
|---|
| 26 | **         mean standard of rest of specified star catalogues or stellar | 
|---|
| 27 | **         populations.  The Sun's motion with respect to a kinematical | 
|---|
| 28 | **         LSR is known as the "standard" solar motion. | 
|---|
| 29 | ** | 
|---|
| 30 | **         There is another sort of LSR, the "dynamical" LSR, which is a | 
|---|
| 31 | **         point in the vicinity of the Sun which is in a circular orbit | 
|---|
| 32 | **         around the Galactic centre.  The Sun's motion with respect to | 
|---|
| 33 | **         the dynamical LSR is called the "peculiar" solar motion.  To | 
|---|
| 34 | **         obtain a radial velocity correction with respect to the | 
|---|
| 35 | **         dynamical LSR use the routine slaRvlsrd. | 
|---|
| 36 | ** | 
|---|
| 37 | **  Reference:  Delhaye (1965), in "Stars and Stellar Systems", vol 5, p73. | 
|---|
| 38 | ** | 
|---|
| 39 | **  Called:  slaCs2c, slaVdv | 
|---|
| 40 | ** | 
|---|
| 41 | **  Last revision:   27 November 1994 | 
|---|
| 42 | ** | 
|---|
| 43 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 44 | */ | 
|---|
| 45 | { | 
|---|
| 46 | /* | 
|---|
| 47 | ** | 
|---|
| 48 | **  Standard solar motion (from Methods of Experimental Physics, ed Meeks, | 
|---|
| 49 | **  vol 12, part C, sec 6.1.5.2, p281): | 
|---|
| 50 | ** | 
|---|
| 51 | **  20 km/s towards RA 18h Dec +30d (1900). | 
|---|
| 52 | ** | 
|---|
| 53 | **  The solar motion is expressed here in the form of a J2000.0 | 
|---|
| 54 | **  equatorial Cartesian vector: | 
|---|
| 55 | ** | 
|---|
| 56 | **      va(1) = x = -speed*cos(ra)*cos(dec) | 
|---|
| 57 | **      va(2) = y = -speed*sin(ra)*cos(dec) | 
|---|
| 58 | **      va(3) = z = -speed*sin(dec) | 
|---|
| 59 | */ | 
|---|
| 60 | static float va[3] = { -0.29000f, 17.31726f, -10.00141f }; | 
|---|
| 61 | float vb[3]; | 
|---|
| 62 |  | 
|---|
| 63 | /* Convert given J2000 RA,dec to x,y,z */ | 
|---|
| 64 | slaCs2c ( r2000, d2000, vb ); | 
|---|
| 65 |  | 
|---|
| 66 | /* Compute dot product with solar motion vector */ | 
|---|
| 67 | return slaVdv ( va, vb ); | 
|---|
| 68 | } | 
|---|