| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | double rms ( double a, double b );
|
|---|
| 4 | void slaSvd ( int m, int n, int mp, int np, double *a, double *w,
|
|---|
| 5 | double *v, double *work, int *jstat )
|
|---|
| 6 | /*
|
|---|
| 7 | ** - - - - - - -
|
|---|
| 8 | ** s l a S v d
|
|---|
| 9 | ** - - - - - - -
|
|---|
| 10 | **
|
|---|
| 11 | ** Singular value decomposition.
|
|---|
| 12 | **
|
|---|
| 13 | ** (double precision)
|
|---|
| 14 | **
|
|---|
| 15 | ** This routine expresses a given matrix a as the product of
|
|---|
| 16 | ** three matrices u, w, v:
|
|---|
| 17 | **
|
|---|
| 18 | ** a = u x w x vt
|
|---|
| 19 | **
|
|---|
| 20 | ** where:
|
|---|
| 21 | **
|
|---|
| 22 | ** a is any m (rows) x n (columns) matrix, where m >= n
|
|---|
| 23 | ** u is an m x n column-orthogonal matrix
|
|---|
| 24 | ** w is an n x n diagonal matrix with w(i,i) >= 0
|
|---|
| 25 | ** vt is the transpose of an n x n orthogonal matrix
|
|---|
| 26 | **
|
|---|
| 27 | ** Note that m and n, above, are the logical dimensions of the
|
|---|
| 28 | ** matrices and vectors concerned, which can be located in
|
|---|
| 29 | ** arrays of larger physical dimensions, given by mp and np.
|
|---|
| 30 | **
|
|---|
| 31 | ** Given:
|
|---|
| 32 | ** m,n int numbers of rows and columns in matrix a
|
|---|
| 33 | ** mp,np int physical dimensions of the array containing a
|
|---|
| 34 | ** a double[mp][np] array containing m x n matrix a
|
|---|
| 35 | **
|
|---|
| 36 | ** Returned:
|
|---|
| 37 | ** *a double[mp][np] array containing m x n column-orthogonal matrix u
|
|---|
| 38 | ** *w double[n] n x n diagonal matrix w (diagonal elements only)
|
|---|
| 39 | ** *v double[np][np] array containing n x n orthogonal matrix v
|
|---|
| 40 | ** *work double[n] workspace
|
|---|
| 41 | ** *jstat int 0 = OK
|
|---|
| 42 | ** -1 = the a array is the wrong shape
|
|---|
| 43 | ** >0 = 1 + index of w for which convergence failed.
|
|---|
| 44 | **
|
|---|
| 45 | ** (n.b. v contains matrix v, not the transpose of matrix v)
|
|---|
| 46 | **
|
|---|
| 47 | ** References:
|
|---|
| 48 | ** The algorithm is an adaptation of the routine SVD in the EISPACK
|
|---|
| 49 | ** library (Garbow et al 1977, Eispack guide extension, Springer
|
|---|
| 50 | ** Verlag), which is a Fortran 66 implementation of the Algol
|
|---|
| 51 | ** routine SVD of Wilkinson & Reinsch 1971 (Handbook for Automatic
|
|---|
| 52 | ** Computation, vol 2, Ed Bauer et al, Springer Verlag). For the
|
|---|
| 53 | ** non-specialist, probably the clearest general account of the use
|
|---|
| 54 | ** of SVD in least squares problems is given in Numerical Recipes
|
|---|
| 55 | ** (Press et al 1986, Cambridge University Press).
|
|---|
| 56 | **
|
|---|
| 57 | ** From slamac.h: TRUE, FALSE
|
|---|
| 58 | **
|
|---|
| 59 | ** Example call (note handling of "adjustable dimension" 2D arrays):
|
|---|
| 60 | **
|
|---|
| 61 | ** double a[MP][NP], w[NP], v[NP][NP], work[NP];
|
|---|
| 62 | ** int m, n, j;
|
|---|
| 63 | ** :
|
|---|
| 64 | ** slaSvd ( m, n, MP, NP, (double *) a, w, (double *) v, work, &j );
|
|---|
| 65 | **
|
|---|
| 66 | ** Last revision: 24 June 1997
|
|---|
| 67 | **
|
|---|
| 68 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 69 | */
|
|---|
| 70 |
|
|---|
| 71 | /* Maximum number of iterations in QR phase */
|
|---|
| 72 | #define ITMAX 30
|
|---|
| 73 | {
|
|---|
| 74 |
|
|---|
| 75 | int i, k, l, j, k1, its, l1, i1, cancel;
|
|---|
| 76 | double g, scale, an, s, x, f, h, cn, c, y, z;
|
|---|
| 77 | double *ai, *aj, *ak;
|
|---|
| 78 | double *vi, *vj, *vk;
|
|---|
| 79 |
|
|---|
| 80 | /* Check that the matrix is the right size and shape */
|
|---|
| 81 | if ( m < n || m > mp || n > np ) {
|
|---|
| 82 | *jstat = -1;
|
|---|
| 83 | } else {
|
|---|
| 84 | *jstat = 0;
|
|---|
| 85 |
|
|---|
| 86 | /* Householder reduction to bidiagonal form */
|
|---|
| 87 | g = 0.0;
|
|---|
| 88 | scale = 0.0;
|
|---|
| 89 | an = 0.0;
|
|---|
| 90 | for ( i = 0, ai = a; i < n; i++, ai += np ) {
|
|---|
| 91 | l = i + 1;
|
|---|
| 92 | work[i] = scale * g;
|
|---|
| 93 | g = 0.0;
|
|---|
| 94 | s = 0.0;
|
|---|
| 95 | scale = 0.0;
|
|---|
| 96 | if ( i < m ) {
|
|---|
| 97 | for ( k = i, ak = ai; k < m; k++, ak += np ) {
|
|---|
| 98 | scale += fabs ( ak[i] );
|
|---|
| 99 | }
|
|---|
| 100 | if ( scale != 0.0 ) {
|
|---|
| 101 | for ( k = i, ak = ai; k < m; k++, ak += np ) {
|
|---|
| 102 | x = ak[i] / scale;
|
|---|
| 103 | ak[i] = x;
|
|---|
| 104 | s += x * x;
|
|---|
| 105 | }
|
|---|
| 106 | f = ai[i];
|
|---|
| 107 | g = - dsign ( sqrt ( s ), f );
|
|---|
| 108 | h = f * g - s;
|
|---|
| 109 | ai[i] = f - g;
|
|---|
| 110 | if ( i != n - 1 ) {
|
|---|
| 111 | for ( j = l; j < n; j++ ) {
|
|---|
| 112 | s = 0.0;
|
|---|
| 113 | for ( k = i, ak = ai; k < m; k++, ak += np ) {
|
|---|
| 114 | s += ak[i] * ak[j];
|
|---|
| 115 | }
|
|---|
| 116 | f = s / h;
|
|---|
| 117 | for ( k = i, ak = ai; k < m; k++, ak += np ) {
|
|---|
| 118 | ak[j] += f * ak[i];
|
|---|
| 119 | }
|
|---|
| 120 | }
|
|---|
| 121 | }
|
|---|
| 122 | for ( k = i, ak = ai; k < m; k++, ak += np ) {
|
|---|
| 123 | ak[i] *= scale;
|
|---|
| 124 | }
|
|---|
| 125 | }
|
|---|
| 126 | }
|
|---|
| 127 | w[i] = scale * g;
|
|---|
| 128 | g = 0.0;
|
|---|
| 129 | s = 0.0;
|
|---|
| 130 | scale = 0.0;
|
|---|
| 131 | if ( i < m && i != n - 1 ) {
|
|---|
| 132 | for ( k = l; k < n; k++ ) {
|
|---|
| 133 | scale += fabs ( ai[k] );
|
|---|
| 134 | }
|
|---|
| 135 | if ( scale != 0.0 ) {
|
|---|
| 136 | for ( k = l; k < n; k++ ) {
|
|---|
| 137 | x = ai[k] / scale;
|
|---|
| 138 | ai[k] = x;
|
|---|
| 139 | s += x * x;
|
|---|
| 140 | }
|
|---|
| 141 | f = ai[l];
|
|---|
| 142 | g = - dsign ( sqrt ( s ), f );
|
|---|
| 143 | h = f * g - s;
|
|---|
| 144 | ai[l] = f - g;
|
|---|
| 145 | for ( k = l; k < n; k++ ) {
|
|---|
| 146 | work[k] = ai[k] / h;
|
|---|
| 147 | }
|
|---|
| 148 | if ( i != m-1 ) {
|
|---|
| 149 | for ( j = l, aj = a + l*np; j < m; j++, aj += np ) {
|
|---|
| 150 | s = 0.0;
|
|---|
| 151 | for ( k = l; k < n; k++ ) {
|
|---|
| 152 | s += aj[k] * ai[k];
|
|---|
| 153 | }
|
|---|
| 154 | for ( k = l; k < n; k++ ) {
|
|---|
| 155 | aj[k] += s * work[k];
|
|---|
| 156 | }
|
|---|
| 157 | }
|
|---|
| 158 | }
|
|---|
| 159 | for ( k = l; k < n; k++ ) {
|
|---|
| 160 | ai[k] *= scale;
|
|---|
| 161 | }
|
|---|
| 162 | }
|
|---|
| 163 | }
|
|---|
| 164 |
|
|---|
| 165 | /* Overestimate of largest column norm for convergence test */
|
|---|
| 166 | cn = fabs ( w[i] ) + fabs ( work[i] );
|
|---|
| 167 | an = gmax ( an, cn );
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | /* Accumulation of right-hand transformations */
|
|---|
| 171 | for ( i = n - 1, ai = a + ( n - 1 ) * np, vi = v + ( n - 1 ) * np;
|
|---|
| 172 | i >= 0;
|
|---|
| 173 | i--, ai -= np, vi -= np ) {
|
|---|
| 174 | if ( i != n - 1 ) {
|
|---|
| 175 | if ( g != 0.0 ) {
|
|---|
| 176 | for ( j = l, vj = v + l * np; j < n; j++, vj += np ) {
|
|---|
| 177 | vj[i] = ( ai[j] / ai[l] ) / g;
|
|---|
| 178 | }
|
|---|
| 179 | for ( j = l; j < n; j++ ) {
|
|---|
| 180 | s = 0.0;
|
|---|
| 181 | for ( k = l, vk = v + l*np; k < n; k++, vk += np ) {
|
|---|
| 182 | s += ai[k] * vk[j];
|
|---|
| 183 | }
|
|---|
| 184 | for ( k = l, vk = v + l*np; k < n; k++, vk += np ) {
|
|---|
| 185 | vk[j] += s * vk[i];
|
|---|
| 186 | }
|
|---|
| 187 | }
|
|---|
| 188 | }
|
|---|
| 189 | for ( j = l, vj = v + l*np; j < n; j++, vj += np ) {
|
|---|
| 190 | vi[j] = 0.0;
|
|---|
| 191 | vj[i] = 0.0;
|
|---|
| 192 | }
|
|---|
| 193 | }
|
|---|
| 194 | vi[i] = 1.0;
|
|---|
| 195 | g = work[i];
|
|---|
| 196 | l = i;
|
|---|
| 197 | }
|
|---|
| 198 |
|
|---|
| 199 | /* Accumulation of left-hand transformations */
|
|---|
| 200 | for ( i = n - 1, ai = a + i*np; i >= 0; i--, ai -= np ) {
|
|---|
| 201 | l = i + 1;
|
|---|
| 202 | g = w[i];
|
|---|
| 203 | if ( i != n - 1 ) {
|
|---|
| 204 | for ( j = l; j < n; j++ ) {
|
|---|
| 205 | ai[j] = 0.0;
|
|---|
| 206 | }
|
|---|
| 207 | }
|
|---|
| 208 | if ( g != 0.0 ) {
|
|---|
| 209 | if ( i != n - 1 ) {
|
|---|
| 210 | for ( j = l; j < n; j++ ) {
|
|---|
| 211 | s = 0.0;
|
|---|
| 212 | for ( k = l, ak = a + l * np; k < m; k++, ak += np ) {
|
|---|
| 213 | s += ak[i] * ak[j];
|
|---|
| 214 | }
|
|---|
| 215 | f = ( s / ai[i] ) / g;
|
|---|
| 216 | for ( k = i, ak = a + i * np; k < m; k++, ak += np ) {
|
|---|
| 217 | ak[j] += f * ak[i];
|
|---|
| 218 | }
|
|---|
| 219 | }
|
|---|
| 220 | }
|
|---|
| 221 | for ( j = i, aj = ai; j < m; j++, aj += np ) {
|
|---|
| 222 | aj[i] /= g;
|
|---|
| 223 | }
|
|---|
| 224 | } else {
|
|---|
| 225 | for ( j = i, aj = ai; j < m; j++, aj += np ) {
|
|---|
| 226 | aj[i] = 0.0;
|
|---|
| 227 | }
|
|---|
| 228 | }
|
|---|
| 229 | ai[i] += 1.0;
|
|---|
| 230 | }
|
|---|
| 231 |
|
|---|
| 232 | /* Diagonalization of the bidiagonal form */
|
|---|
| 233 | for ( k = n - 1; k >= 0; k-- ) {
|
|---|
| 234 | k1 = k - 1;
|
|---|
| 235 |
|
|---|
| 236 | /* Iterate until converged */
|
|---|
| 237 | for ( its = 1; its <= ITMAX; its++ ) {
|
|---|
| 238 |
|
|---|
| 239 | /* Test for splitting into submatrices */
|
|---|
| 240 | cancel = TRUE;
|
|---|
| 241 | for ( l = k; l >= 0; l-- ) {
|
|---|
| 242 | l1 = l - 1;
|
|---|
| 243 | if ( an + fabs ( work[l] ) == an ) {
|
|---|
| 244 | cancel = FALSE;
|
|---|
| 245 | break;
|
|---|
| 246 | }
|
|---|
| 247 | /* (Following never attempted for l=0 because work[0] is zero) */
|
|---|
| 248 | if ( an + fabs ( w[l1] ) == an ) {
|
|---|
| 249 | break;
|
|---|
| 250 | }
|
|---|
| 251 | }
|
|---|
| 252 |
|
|---|
| 253 | /* Cancellation of work[l] if l>0 */
|
|---|
| 254 | if ( cancel ) {
|
|---|
| 255 | c = 0.0;
|
|---|
| 256 | s = 1.0;
|
|---|
| 257 | for ( i = l; i <= k; i++ ) {
|
|---|
| 258 | f = s * work[i];
|
|---|
| 259 | if ( an + fabs ( f ) == an ) {
|
|---|
| 260 | break;
|
|---|
| 261 | }
|
|---|
| 262 | g = w[i];
|
|---|
| 263 | h = rms ( f, g );
|
|---|
| 264 | w[i] = h;
|
|---|
| 265 | c = g / h;
|
|---|
| 266 | s = - f / h;
|
|---|
| 267 | for ( j = 0, aj = a; j < m; j++, aj += np ) {
|
|---|
| 268 | y = aj[l1];
|
|---|
| 269 | z = aj[i];
|
|---|
| 270 | aj[l1] = y * c + z * s;
|
|---|
| 271 | aj[i] = - y * s + z * c;
|
|---|
| 272 | }
|
|---|
| 273 | }
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 | /* Converged? */
|
|---|
| 277 | z = w[k];
|
|---|
| 278 | if ( l == k ) {
|
|---|
| 279 |
|
|---|
| 280 | /* Yes: ensure singular values non-negative */
|
|---|
| 281 | if ( z < 0.0 ) {
|
|---|
| 282 | w[k] = -z;
|
|---|
| 283 | for ( j = 0, vj = v; j < n; j++, vj += np ) {
|
|---|
| 284 | vj[k] = -vj[k];
|
|---|
| 285 | }
|
|---|
| 286 | }
|
|---|
| 287 |
|
|---|
| 288 | /* Stop iterating */
|
|---|
| 289 | break;
|
|---|
| 290 |
|
|---|
| 291 | } else {
|
|---|
| 292 |
|
|---|
| 293 | /* Not converged yet: set status if iteration limit reached */
|
|---|
| 294 | if ( its >= ITMAX ) {
|
|---|
| 295 | *jstat = k + 1;
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 | /* Shift from bottom 2 x 2 minor */
|
|---|
| 299 | x = w[l];
|
|---|
| 300 | y = w[k1];
|
|---|
| 301 | g = work[k1];
|
|---|
| 302 | h = work[k];
|
|---|
| 303 | f = ( ( y - z ) * ( y + z )
|
|---|
| 304 | + ( g - h ) * ( g + h ) ) / ( 2.0 * h * y );
|
|---|
| 305 | g = ( fabs ( f ) <= 1e15 ) ? rms ( f, 1.0 ) : fabs ( f );
|
|---|
| 306 | f = ( ( x - z ) * ( x + z )
|
|---|
| 307 | + h * ( y / ( f + dsign ( g, f ) ) - h ) ) / x;
|
|---|
| 308 |
|
|---|
| 309 | /* Next QR transformation */
|
|---|
| 310 | c = 1.0;
|
|---|
| 311 | s = 1.0;
|
|---|
| 312 | for ( i1 = l; i1 <= k1; i1++ ) {
|
|---|
| 313 | i = i1 + 1;
|
|---|
| 314 | g = work[i];
|
|---|
| 315 | y = w[i];
|
|---|
| 316 | h = s * g;
|
|---|
| 317 | g = c * g;
|
|---|
| 318 | z = rms ( f, h );
|
|---|
| 319 | work[i1] = z;
|
|---|
| 320 | if ( z != 0.0 ) {
|
|---|
| 321 | c = f / z;
|
|---|
| 322 | s = h / z;
|
|---|
| 323 | } else {
|
|---|
| 324 | c = 1.0;
|
|---|
| 325 | s = 0.0;
|
|---|
| 326 | }
|
|---|
| 327 | f = x * c + g * s;
|
|---|
| 328 | g = - x * s + g * c;
|
|---|
| 329 | h = y * s;
|
|---|
| 330 | y = y * c;
|
|---|
| 331 | for ( j = 0, vj = v; j < n; j++, vj += np ) {
|
|---|
| 332 | x = vj[i1];
|
|---|
| 333 | z = vj[i];
|
|---|
| 334 | vj[i1] = x * c + z * s;
|
|---|
| 335 | vj[i] = - x * s + z * c;
|
|---|
| 336 | }
|
|---|
| 337 | z = rms ( f, h );
|
|---|
| 338 | w[i1] = z;
|
|---|
| 339 | if ( z != 0.0 ) {
|
|---|
| 340 | c = f / z;
|
|---|
| 341 | s = h / z;
|
|---|
| 342 | }
|
|---|
| 343 | f = c * g + s * y;
|
|---|
| 344 | x = - s * g + c * y;
|
|---|
| 345 | for ( j = 0, aj = a; j < m; j++, aj += np ) {
|
|---|
| 346 | y = aj[i1];
|
|---|
| 347 | z = aj[i];
|
|---|
| 348 | aj[i1] = y * c + z * s;
|
|---|
| 349 | aj[i] = - y * s + z * c;
|
|---|
| 350 | }
|
|---|
| 351 | }
|
|---|
| 352 | work[l] = 0.0;
|
|---|
| 353 | work[k] = f;
|
|---|
| 354 | w[k] = x;
|
|---|
| 355 | }
|
|---|
| 356 | }
|
|---|
| 357 | }
|
|---|
| 358 | }
|
|---|
| 359 | }
|
|---|
| 360 |
|
|---|
| 361 | double rms ( double a, double b )
|
|---|
| 362 |
|
|---|
| 363 | /* sqrt(a*a+b*b) with protection against under/overflow */
|
|---|
| 364 |
|
|---|
| 365 | {
|
|---|
| 366 | double wa, wb, w;
|
|---|
| 367 |
|
|---|
| 368 | wa = fabs ( a );
|
|---|
| 369 | wb = fabs ( b );
|
|---|
| 370 |
|
|---|
| 371 | if ( wa > wb ) {
|
|---|
| 372 | w = wa;
|
|---|
| 373 | wa = wb;
|
|---|
| 374 | wb = w;
|
|---|
| 375 | }
|
|---|
| 376 |
|
|---|
| 377 | if ( wb == 0.0 ) {
|
|---|
| 378 | return 0.0;
|
|---|
| 379 | } else {
|
|---|
| 380 | w = wa / wb;
|
|---|
| 381 | return wb * sqrt ( 1.0 + w * w );
|
|---|
| 382 | }
|
|---|
| 383 | }
|
|---|