1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaSvdcov ( int n, int np, int nc, double *w, double *v,
|
---|
4 | double *work, double *cvm )
|
---|
5 | /*
|
---|
6 | ** - - - - - - - - - -
|
---|
7 | ** s l a S v d c o v
|
---|
8 | ** - - - - - - - - - -
|
---|
9 | **
|
---|
10 | ** From the w and v matrices from the SVD factorization of a matrix
|
---|
11 | ** (as obtained from the slaSvd routine), obtain the covariance matrix.
|
---|
12 | **
|
---|
13 | ** (double precision)
|
---|
14 | **
|
---|
15 | ** Given:
|
---|
16 | ** n int number of rows and columns in matrices w and v
|
---|
17 | ** np int first dimension of array containing matrix v
|
---|
18 | ** nc int first dimension of array to receive cvm
|
---|
19 | ** *w double[n] nxn diagonal matrix w (diagonal elements only)
|
---|
20 | ** *v double[np][np] array containing nxn orthogonal matrix v
|
---|
21 | **
|
---|
22 | ** Returned:
|
---|
23 | ** *work double[n] workspace
|
---|
24 | ** *cvm double[nc][nc] array to receive covariance matrix
|
---|
25 | **
|
---|
26 | ** Reference:
|
---|
27 | ** Numerical Recipes, Section 14.3.
|
---|
28 | **
|
---|
29 | ** Example call (note handling of "adjustable dimension" 2D arrays):
|
---|
30 | **
|
---|
31 | ** double w[NP], v[NP][NP], work[NP], c[NC][NC];
|
---|
32 | ** int n;
|
---|
33 | ** :
|
---|
34 | ** slaSvdcov ( n, NP, NC, w, (double *) v, work, (double *) c );
|
---|
35 | **
|
---|
36 | ** Last revision: 20 February 1995
|
---|
37 | **
|
---|
38 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
39 | */
|
---|
40 | {
|
---|
41 | int i, j, k;
|
---|
42 | double s;
|
---|
43 | double *vi, *vj;
|
---|
44 | double *cvmi, *cvmj;
|
---|
45 |
|
---|
46 |
|
---|
47 | for ( i = 0; i < n; i++ ) {
|
---|
48 | s = w[i];
|
---|
49 | if ( s != 0.0 )
|
---|
50 | work[i] = 1.0 / ( s * s );
|
---|
51 | else
|
---|
52 | work[i] = 0.0;
|
---|
53 | }
|
---|
54 | for ( i = 0, vi = v, cvmi = cvm;
|
---|
55 | i < n;
|
---|
56 | i++, vi += np, cvmi += nc ) {
|
---|
57 | for ( j = 0, vj = v, cvmj = cvm;
|
---|
58 | j <= i;
|
---|
59 | j++, vj += np, cvmj += nc ) {
|
---|
60 | s = 0.0;
|
---|
61 | for ( k = 0; k < n; k++ ) {
|
---|
62 | s += vi[k] * vj[k] * work[k];
|
---|
63 | }
|
---|
64 | cvmi[j] = s;
|
---|
65 | cvmj[i] = s;
|
---|
66 | }
|
---|
67 | }
|
---|
68 | }
|
---|