| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | void slaSvdcov ( int n, int np, int nc, double *w, double *v,
|
|---|
| 4 | double *work, double *cvm )
|
|---|
| 5 | /*
|
|---|
| 6 | ** - - - - - - - - - -
|
|---|
| 7 | ** s l a S v d c o v
|
|---|
| 8 | ** - - - - - - - - - -
|
|---|
| 9 | **
|
|---|
| 10 | ** From the w and v matrices from the SVD factorization of a matrix
|
|---|
| 11 | ** (as obtained from the slaSvd routine), obtain the covariance matrix.
|
|---|
| 12 | **
|
|---|
| 13 | ** (double precision)
|
|---|
| 14 | **
|
|---|
| 15 | ** Given:
|
|---|
| 16 | ** n int number of rows and columns in matrices w and v
|
|---|
| 17 | ** np int first dimension of array containing matrix v
|
|---|
| 18 | ** nc int first dimension of array to receive cvm
|
|---|
| 19 | ** *w double[n] nxn diagonal matrix w (diagonal elements only)
|
|---|
| 20 | ** *v double[np][np] array containing nxn orthogonal matrix v
|
|---|
| 21 | **
|
|---|
| 22 | ** Returned:
|
|---|
| 23 | ** *work double[n] workspace
|
|---|
| 24 | ** *cvm double[nc][nc] array to receive covariance matrix
|
|---|
| 25 | **
|
|---|
| 26 | ** Reference:
|
|---|
| 27 | ** Numerical Recipes, Section 14.3.
|
|---|
| 28 | **
|
|---|
| 29 | ** Example call (note handling of "adjustable dimension" 2D arrays):
|
|---|
| 30 | **
|
|---|
| 31 | ** double w[NP], v[NP][NP], work[NP], c[NC][NC];
|
|---|
| 32 | ** int n;
|
|---|
| 33 | ** :
|
|---|
| 34 | ** slaSvdcov ( n, NP, NC, w, (double *) v, work, (double *) c );
|
|---|
| 35 | **
|
|---|
| 36 | ** Last revision: 20 February 1995
|
|---|
| 37 | **
|
|---|
| 38 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 39 | */
|
|---|
| 40 | {
|
|---|
| 41 | int i, j, k;
|
|---|
| 42 | double s;
|
|---|
| 43 | double *vi, *vj;
|
|---|
| 44 | double *cvmi, *cvmj;
|
|---|
| 45 |
|
|---|
| 46 |
|
|---|
| 47 | for ( i = 0; i < n; i++ ) {
|
|---|
| 48 | s = w[i];
|
|---|
| 49 | if ( s != 0.0 )
|
|---|
| 50 | work[i] = 1.0 / ( s * s );
|
|---|
| 51 | else
|
|---|
| 52 | work[i] = 0.0;
|
|---|
| 53 | }
|
|---|
| 54 | for ( i = 0, vi = v, cvmi = cvm;
|
|---|
| 55 | i < n;
|
|---|
| 56 | i++, vi += np, cvmi += nc ) {
|
|---|
| 57 | for ( j = 0, vj = v, cvmj = cvm;
|
|---|
| 58 | j <= i;
|
|---|
| 59 | j++, vj += np, cvmj += nc ) {
|
|---|
| 60 | s = 0.0;
|
|---|
| 61 | for ( k = 0; k < n; k++ ) {
|
|---|
| 62 | s += vi[k] * vj[k] * work[k];
|
|---|
| 63 | }
|
|---|
| 64 | cvmi[j] = s;
|
|---|
| 65 | cvmj[i] = s;
|
|---|
| 66 | }
|
|---|
| 67 | }
|
|---|
| 68 | }
|
|---|