| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaSvdcov ( int n, int np, int nc, double *w, double *v, | 
|---|
| 4 | double *work, double *cvm ) | 
|---|
| 5 | /* | 
|---|
| 6 | **  - - - - - - - - - - | 
|---|
| 7 | **   s l a S v d c o v | 
|---|
| 8 | **  - - - - - - - - - - | 
|---|
| 9 | ** | 
|---|
| 10 | **  From the w and v matrices from the SVD factorization of a matrix | 
|---|
| 11 | **  (as obtained from the slaSvd routine), obtain the covariance matrix. | 
|---|
| 12 | ** | 
|---|
| 13 | **  (double precision) | 
|---|
| 14 | ** | 
|---|
| 15 | **  Given: | 
|---|
| 16 | **     n      int            number of rows and columns in matrices w and v | 
|---|
| 17 | **     np     int            first dimension of array containing matrix v | 
|---|
| 18 | **     nc     int            first dimension of array to receive cvm | 
|---|
| 19 | **     *w     double[n]      nxn diagonal matrix w (diagonal elements only) | 
|---|
| 20 | **     *v     double[np][np] array containing nxn orthogonal matrix v | 
|---|
| 21 | ** | 
|---|
| 22 | **  Returned: | 
|---|
| 23 | **     *work  double[n]      workspace | 
|---|
| 24 | **     *cvm   double[nc][nc] array to receive covariance matrix | 
|---|
| 25 | ** | 
|---|
| 26 | **  Reference: | 
|---|
| 27 | **     Numerical Recipes, Section 14.3. | 
|---|
| 28 | ** | 
|---|
| 29 | **  Example call (note handling of "adjustable dimension" 2D arrays): | 
|---|
| 30 | ** | 
|---|
| 31 | **    double w[NP], v[NP][NP], work[NP], c[NC][NC]; | 
|---|
| 32 | **    int n; | 
|---|
| 33 | **     : | 
|---|
| 34 | **    slaSvdcov ( n, NP, NC, w, (double *) v, work, (double *) c ); | 
|---|
| 35 | ** | 
|---|
| 36 | **  Last revision:   20 February 1995 | 
|---|
| 37 | ** | 
|---|
| 38 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 39 | */ | 
|---|
| 40 | { | 
|---|
| 41 | int i, j, k; | 
|---|
| 42 | double s; | 
|---|
| 43 | double *vi, *vj; | 
|---|
| 44 | double *cvmi, *cvmj; | 
|---|
| 45 |  | 
|---|
| 46 |  | 
|---|
| 47 | for ( i = 0; i < n; i++ ) { | 
|---|
| 48 | s = w[i]; | 
|---|
| 49 | if ( s != 0.0 ) | 
|---|
| 50 | work[i] = 1.0 / ( s * s ); | 
|---|
| 51 | else | 
|---|
| 52 | work[i] = 0.0; | 
|---|
| 53 | } | 
|---|
| 54 | for ( i = 0, vi = v, cvmi = cvm; | 
|---|
| 55 | i < n; | 
|---|
| 56 | i++, vi += np, cvmi += nc ) { | 
|---|
| 57 | for ( j = 0, vj = v, cvmj = cvm; | 
|---|
| 58 | j <= i; | 
|---|
| 59 | j++, vj += np, cvmj += nc ) { | 
|---|
| 60 | s = 0.0; | 
|---|
| 61 | for ( k = 0; k < n; k++ ) { | 
|---|
| 62 | s += vi[k] * vj[k] * work[k]; | 
|---|
| 63 | } | 
|---|
| 64 | cvmi[j] = s; | 
|---|
| 65 | cvmj[i] = s; | 
|---|
| 66 | } | 
|---|
| 67 | } | 
|---|
| 68 | } | 
|---|