| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | void slaSvdsol ( int m, int n, int mp, int np, double *b, double *u,
|
|---|
| 4 | double *w, double *v, double *work, double *x )
|
|---|
| 5 | /*
|
|---|
| 6 | ** - - - - - - - - - -
|
|---|
| 7 | ** s l a S v d s o l
|
|---|
| 8 | ** - - - - - - - - - -
|
|---|
| 9 | **
|
|---|
| 10 | ** From a given vector and the SVD of a matrix (as obtained from
|
|---|
| 11 | ** the slaSvd routine), obtain the solution vector.
|
|---|
| 12 | **
|
|---|
| 13 | ** (double precision)
|
|---|
| 14 | **
|
|---|
| 15 | ** This routine solves the equation:
|
|---|
| 16 | **
|
|---|
| 17 | ** a . x = b
|
|---|
| 18 | **
|
|---|
| 19 | ** where:
|
|---|
| 20 | **
|
|---|
| 21 | ** a is a given m (rows) x n (columns) matrix, where m.ge.n
|
|---|
| 22 | ** x is the n-vector we wish to find
|
|---|
| 23 | ** b is a given m-vector
|
|---|
| 24 | **
|
|---|
| 25 | ** By means of the singular value decomposition method (SVD). In
|
|---|
| 26 | ** this method, the matrix a is first factorized (for example by
|
|---|
| 27 | ** the routine slaSvd) into the following components:
|
|---|
| 28 | **
|
|---|
| 29 | ** a = u x w x vt
|
|---|
| 30 | **
|
|---|
| 31 | ** where:
|
|---|
| 32 | **
|
|---|
| 33 | ** a is the m (rows) x n (columns) matrix
|
|---|
| 34 | ** u is an m x n column-orthogonal matrix
|
|---|
| 35 | ** w is an n x n diagonal matrix with w(i,i).ge.0
|
|---|
| 36 | ** vt is the transpose of an nxn orthogonal matrix
|
|---|
| 37 | **
|
|---|
| 38 | ** Note that m and n, above, are the logical dimensions of the
|
|---|
| 39 | ** matrices and vectors concerned, which can be located in
|
|---|
| 40 | ** arrays of larger physical dimensions mp and np.
|
|---|
| 41 | **
|
|---|
| 42 | ** The solution is found from the expression:
|
|---|
| 43 | **
|
|---|
| 44 | ** x = v . [diag(1/wj)] . ( transpose(u) . b )
|
|---|
| 45 | **
|
|---|
| 46 | ** Notes:
|
|---|
| 47 | **
|
|---|
| 48 | ** 1) If matrix a is square, and if the diagonal matrix w is not
|
|---|
| 49 | ** adjusted, the method is equivalent to conventional solution
|
|---|
| 50 | ** of simultaneous equations.
|
|---|
| 51 | **
|
|---|
| 52 | ** 2) If m>n, the result is a least-squares fit.
|
|---|
| 53 | **
|
|---|
| 54 | ** 3) If the solution is poorly determined, this shows up in the
|
|---|
| 55 | ** SVD factorization as very small or zero wj values. Where
|
|---|
| 56 | ** a wj value is small but non-zero it can be set to zero to
|
|---|
| 57 | ** avoid ill effects. The present routine detects such zero
|
|---|
| 58 | ** wj values and produces a sensible solution, with highly
|
|---|
| 59 | ** correlated terms kept under control rather than being allowed
|
|---|
| 60 | ** to elope to infinity, and with meaningful values for the
|
|---|
| 61 | ** other terms.
|
|---|
| 62 | **
|
|---|
| 63 | ** Given:
|
|---|
| 64 | ** m,n int numbers of rows and columns in matrix a
|
|---|
| 65 | ** mp,np int physical dimensions of array containing matrix a
|
|---|
| 66 | ** *b double[m] known vector b
|
|---|
| 67 | ** *u double[mp][np] array containing mxn matrix u
|
|---|
| 68 | ** *w double[n] nxn diagonal matrix w (diagonal elements only)
|
|---|
| 69 | ** *v double[np][np] array containing nxn orthogonal matrix v
|
|---|
| 70 | **
|
|---|
| 71 | ** Returned:
|
|---|
| 72 | ** *work double[n] workspace
|
|---|
| 73 | ** *x double[n] unknown vector x
|
|---|
| 74 | **
|
|---|
| 75 | ** Note: If the relative sizes of m, n, mp and np are inconsistent,
|
|---|
| 76 | ** the vector x is returned unaltered. This condition should
|
|---|
| 77 | ** have been detected when the SVD was performed using slaSvd.
|
|---|
| 78 | **
|
|---|
| 79 | ** Reference:
|
|---|
| 80 | ** Numerical Recipes, Section 2.9.
|
|---|
| 81 | **
|
|---|
| 82 | ** Example call (note handling of "adjustable dimension" 2D arrays):
|
|---|
| 83 | **
|
|---|
| 84 | ** double a[MP][NP], w[NP], v[NP][NP], work[NP], b[MP], x[NP];
|
|---|
| 85 | ** int m, n;
|
|---|
| 86 | ** :
|
|---|
| 87 | ** slaSvdsol ( m, n, MP, NP, b, (double *) a, w, (double *) v, work, x );
|
|---|
| 88 | **
|
|---|
| 89 | ** Last revision: 20 February 1995
|
|---|
| 90 | **
|
|---|
| 91 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 92 | */
|
|---|
| 93 | {
|
|---|
| 94 | int j, i, jj;
|
|---|
| 95 | double s;
|
|---|
| 96 | double *ui;
|
|---|
| 97 | double *vj;
|
|---|
| 98 |
|
|---|
| 99 | /* Check that the matrix is the right size and shape */
|
|---|
| 100 | if ( m >= n && m <= mp && n <= np ) {
|
|---|
| 101 |
|
|---|
| 102 | /* Calculate [diag(1/wj)] . transpose(u) . b (or zero for zero wj) */
|
|---|
| 103 | for ( j = 0; j < n; j++ ) {
|
|---|
| 104 | s = 0.0;
|
|---|
| 105 | if ( w[j] != 0.0 ) {
|
|---|
| 106 | for ( i = 0, ui = u;
|
|---|
| 107 | i < m;
|
|---|
| 108 | i++, ui += np ) {
|
|---|
| 109 | s += ui[j] * b[i];
|
|---|
| 110 | }
|
|---|
| 111 | s /= w[j];
|
|---|
| 112 | }
|
|---|
| 113 | work[j] = s;
|
|---|
| 114 | }
|
|---|
| 115 |
|
|---|
| 116 | /* Multiply by matrix v to get result */
|
|---|
| 117 | for ( j = 0, vj = v;
|
|---|
| 118 | j < n;
|
|---|
| 119 | j++, vj += np ) {
|
|---|
| 120 | s = 0.0;
|
|---|
| 121 | for ( jj = 0; jj < n; jj++ ) {
|
|---|
| 122 | s += vj[jj] * work[jj];
|
|---|
| 123 | }
|
|---|
| 124 | x[j] = s;
|
|---|
| 125 | }
|
|---|
| 126 | }
|
|---|
| 127 | }
|
|---|