| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaSvdsol ( int m, int n, int mp, int np, double *b, double *u, | 
|---|
| 4 | double *w, double *v, double *work, double *x ) | 
|---|
| 5 | /* | 
|---|
| 6 | **  - - - - - - - - - - | 
|---|
| 7 | **   s l a S v d s o l | 
|---|
| 8 | **  - - - - - - - - - - | 
|---|
| 9 | ** | 
|---|
| 10 | **  From a given vector and the SVD of a matrix (as obtained from | 
|---|
| 11 | **  the slaSvd routine), obtain the solution vector. | 
|---|
| 12 | ** | 
|---|
| 13 | **  (double precision) | 
|---|
| 14 | ** | 
|---|
| 15 | **  This routine solves the equation: | 
|---|
| 16 | ** | 
|---|
| 17 | **     a . x = b | 
|---|
| 18 | ** | 
|---|
| 19 | **  where: | 
|---|
| 20 | ** | 
|---|
| 21 | **     a   is a given m (rows) x n (columns) matrix, where m.ge.n | 
|---|
| 22 | **     x   is the n-vector we wish to find | 
|---|
| 23 | **     b   is a given m-vector | 
|---|
| 24 | ** | 
|---|
| 25 | **  By means of the singular value decomposition method (SVD).  In | 
|---|
| 26 | **  this method, the matrix a is first factorized (for example by | 
|---|
| 27 | **  the routine slaSvd) into the following components: | 
|---|
| 28 | ** | 
|---|
| 29 | **     a = u x w x vt | 
|---|
| 30 | ** | 
|---|
| 31 | **  where: | 
|---|
| 32 | ** | 
|---|
| 33 | **     a   is the m (rows) x n (columns) matrix | 
|---|
| 34 | **     u   is an m x n column-orthogonal matrix | 
|---|
| 35 | **     w   is an n x n diagonal matrix with w(i,i).ge.0 | 
|---|
| 36 | **     vt  is the transpose of an nxn orthogonal matrix | 
|---|
| 37 | ** | 
|---|
| 38 | **     Note that m and n, above, are the logical dimensions of the | 
|---|
| 39 | **     matrices and vectors concerned, which can be located in | 
|---|
| 40 | **     arrays of larger physical dimensions mp and np. | 
|---|
| 41 | ** | 
|---|
| 42 | **  The solution is found from the expression: | 
|---|
| 43 | ** | 
|---|
| 44 | **     x = v . [diag(1/wj)] . ( transpose(u) . b ) | 
|---|
| 45 | ** | 
|---|
| 46 | **  Notes: | 
|---|
| 47 | ** | 
|---|
| 48 | **  1)  If matrix a is square, and if the diagonal matrix w is not | 
|---|
| 49 | **      adjusted, the method is equivalent to conventional solution | 
|---|
| 50 | **      of simultaneous equations. | 
|---|
| 51 | ** | 
|---|
| 52 | **  2)  If m>n, the result is a least-squares fit. | 
|---|
| 53 | ** | 
|---|
| 54 | **  3)  If the solution is poorly determined, this shows up in the | 
|---|
| 55 | **      SVD factorization as very small or zero wj values.  Where | 
|---|
| 56 | **      a wj value is small but non-zero it can be set to zero to | 
|---|
| 57 | **      avoid ill effects.  The present routine detects such zero | 
|---|
| 58 | **      wj values and produces a sensible solution, with highly | 
|---|
| 59 | **      correlated terms kept under control rather than being allowed | 
|---|
| 60 | **      to elope to infinity, and with meaningful values for the | 
|---|
| 61 | **      other terms. | 
|---|
| 62 | ** | 
|---|
| 63 | **  Given: | 
|---|
| 64 | **     m,n    int            numbers of rows and columns in matrix a | 
|---|
| 65 | **     mp,np  int            physical dimensions of array containing matrix a | 
|---|
| 66 | **     *b     double[m]      known vector b | 
|---|
| 67 | **     *u     double[mp][np] array containing mxn matrix u | 
|---|
| 68 | **     *w     double[n]      nxn diagonal matrix w (diagonal elements only) | 
|---|
| 69 | **     *v     double[np][np] array containing nxn orthogonal matrix v | 
|---|
| 70 | ** | 
|---|
| 71 | **  Returned: | 
|---|
| 72 | **     *work  double[n]      workspace | 
|---|
| 73 | **     *x     double[n]      unknown vector x | 
|---|
| 74 | ** | 
|---|
| 75 | **  Note:  If the relative sizes of m, n, mp and np are inconsistent, | 
|---|
| 76 | **         the vector x is returned unaltered.  This condition should | 
|---|
| 77 | **         have been detected when the SVD was performed using slaSvd. | 
|---|
| 78 | ** | 
|---|
| 79 | **  Reference: | 
|---|
| 80 | **     Numerical Recipes, Section 2.9. | 
|---|
| 81 | ** | 
|---|
| 82 | **  Example call (note handling of "adjustable dimension" 2D arrays): | 
|---|
| 83 | ** | 
|---|
| 84 | **    double a[MP][NP], w[NP], v[NP][NP], work[NP], b[MP], x[NP]; | 
|---|
| 85 | **    int m, n; | 
|---|
| 86 | **     : | 
|---|
| 87 | **    slaSvdsol ( m, n, MP, NP, b, (double *) a, w, (double *) v, work, x ); | 
|---|
| 88 | ** | 
|---|
| 89 | **  Last revision:   20 February 1995 | 
|---|
| 90 | ** | 
|---|
| 91 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 92 | */ | 
|---|
| 93 | { | 
|---|
| 94 | int j, i, jj; | 
|---|
| 95 | double s; | 
|---|
| 96 | double *ui; | 
|---|
| 97 | double *vj; | 
|---|
| 98 |  | 
|---|
| 99 | /* Check that the matrix is the right size and shape */ | 
|---|
| 100 | if ( m >= n && m <= mp && n <= np ) { | 
|---|
| 101 |  | 
|---|
| 102 | /* Calculate [diag(1/wj)] . transpose(u) . b (or zero for zero wj) */ | 
|---|
| 103 | for ( j = 0; j < n; j++ ) { | 
|---|
| 104 | s = 0.0; | 
|---|
| 105 | if ( w[j] != 0.0 ) { | 
|---|
| 106 | for ( i = 0, ui = u; | 
|---|
| 107 | i < m; | 
|---|
| 108 | i++, ui += np ) { | 
|---|
| 109 | s += ui[j] * b[i]; | 
|---|
| 110 | } | 
|---|
| 111 | s /= w[j]; | 
|---|
| 112 | } | 
|---|
| 113 | work[j] = s; | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | /* Multiply by matrix v to get result */ | 
|---|
| 117 | for ( j = 0, vj = v; | 
|---|
| 118 | j < n; | 
|---|
| 119 | j++, vj += np ) { | 
|---|
| 120 | s = 0.0; | 
|---|
| 121 | for ( jj = 0; jj < n; jj++ ) { | 
|---|
| 122 | s += vj[jj] * work[jj]; | 
|---|
| 123 | } | 
|---|
| 124 | x[j] = s; | 
|---|
| 125 | } | 
|---|
| 126 | } | 
|---|
| 127 | } | 
|---|