Last change
on this file was 732, checked in by tbretz, 24 years ago |
*** empty log message ***
|
-
Property svn:executable
set to
*
|
File size:
1.3 KB
|
Line | |
---|
1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | void slaTp2v ( float xi, float eta, float v0[3], float v[3] )
|
---|
4 | /*
|
---|
5 | ** - - - - - - - -
|
---|
6 | ** s l a T p 2 v
|
---|
7 | ** - - - - - - - -
|
---|
8 | **
|
---|
9 | ** Given the tangent-plane coordinates of a star and the direction
|
---|
10 | ** cosines of the tangent point, determine the direction cosines
|
---|
11 | ** of the star.
|
---|
12 | **
|
---|
13 | ** (single precision)
|
---|
14 | **
|
---|
15 | ** Given:
|
---|
16 | ** xi,eta float tangent plane coordinates of star
|
---|
17 | ** v0 float[3] direction cosines of tangent point
|
---|
18 | **
|
---|
19 | ** Returned:
|
---|
20 | ** v float[3] direction cosines of star
|
---|
21 | **
|
---|
22 | ** Notes:
|
---|
23 | **
|
---|
24 | ** 1 If vector v0 is not of unit length, the returned vector v will
|
---|
25 | ** be wrong.
|
---|
26 | **
|
---|
27 | ** 2 If vector v0 points at a pole, the returned vector v will be
|
---|
28 | ** based on the arbitrary assumption that the RA of the tangent
|
---|
29 | ** point is zero.
|
---|
30 | **
|
---|
31 | ** 3 This routine is the Cartesian equivalent of the routine slaTp2s.
|
---|
32 | **
|
---|
33 | ** Last revision: 11 February 1995
|
---|
34 | **
|
---|
35 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
36 | */
|
---|
37 | {
|
---|
38 | float x, y, z, f, r;
|
---|
39 |
|
---|
40 |
|
---|
41 | x = v0[0];
|
---|
42 | y = v0[1];
|
---|
43 | z = v0[2];
|
---|
44 | f = (float) sqrt ( (double) ( 1.0f + xi * xi + eta * eta ) );
|
---|
45 | r = (float) sqrt ( (double) ( x * x + y * y ) );
|
---|
46 | if ( r == 0.0f ) {
|
---|
47 | r = 1e-20f;
|
---|
48 | x = r;
|
---|
49 | }
|
---|
50 | v[0] = ( x - ( xi * y + eta * x * z ) / r ) / f;
|
---|
51 | v[1] = ( y + ( xi * x - eta * y * z ) / r ) / f;
|
---|
52 | v[2] = ( z + eta * r ) / f;
|
---|
53 | }
|
---|
Note:
See
TracBrowser
for help on using the repository browser.