| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaTps2c ( float xi, float eta, float ra, float dec, | 
|---|
| 4 | float *raz1, float *decz1, | 
|---|
| 5 | float *raz2, float *decz2, int *n ) | 
|---|
| 6 | /* | 
|---|
| 7 | **  - - - - - - - - - | 
|---|
| 8 | **   s l a T p s 2 c | 
|---|
| 9 | **  - - - - - - - - - | 
|---|
| 10 | ** | 
|---|
| 11 | **  From the tangent plane coordinates of a star of known RA,Dec, | 
|---|
| 12 | **  determine the RA,Dec of the tangent point. | 
|---|
| 13 | ** | 
|---|
| 14 | **  (single precision) | 
|---|
| 15 | ** | 
|---|
| 16 | **  Given: | 
|---|
| 17 | **     xi,eta        float   tangent plane rectangular coordinates | 
|---|
| 18 | **     ra,dec        float   spherical coordinates | 
|---|
| 19 | ** | 
|---|
| 20 | **  Returned: | 
|---|
| 21 | **     *raz1,*decz1  float   spherical coordinates of TP, solution 1 | 
|---|
| 22 | **     *raz2,*decz2  float   spherical coordinates of TP, solution 2 | 
|---|
| 23 | **     *n            int     number of solutions: | 
|---|
| 24 | **                            0 = no solutions returned (note 2) | 
|---|
| 25 | **                            1 = only the first solution is useful (note 3) | 
|---|
| 26 | **                            2 = both solutions are useful (note 3) | 
|---|
| 27 | ** | 
|---|
| 28 | **  Notes: | 
|---|
| 29 | ** | 
|---|
| 30 | **  1  The raz1 and raz2 values are returned in the range 0-2pi. | 
|---|
| 31 | ** | 
|---|
| 32 | **  2  Cases where there is no solution can only arise near the poles. | 
|---|
| 33 | **     For example, it is clearly impossible for a star at the pole | 
|---|
| 34 | **     itself to have a non-zero xi value, and hence it is | 
|---|
| 35 | **     meaningless to ask where the tangent point would have to be | 
|---|
| 36 | **     to bring about this combination of xi and dec. | 
|---|
| 37 | ** | 
|---|
| 38 | **  3  Also near the poles, cases can arise where there are two useful | 
|---|
| 39 | **     solutions.  The argument n indicates whether the second of the | 
|---|
| 40 | **     two solutions returned is useful;  n=1 indicates only one useful | 
|---|
| 41 | **     solution, the usual case;  under these circumstances, the second | 
|---|
| 42 | **     solution corresponds to the "over-the-pole" case, and this is | 
|---|
| 43 | **     reflected in the values of raz2 and decz2 which are returned. | 
|---|
| 44 | ** | 
|---|
| 45 | **  4  The decz1 and decz2 values are returned in the range +/-pi, but | 
|---|
| 46 | **     in the usual, non-pole-crossing, case, the range is +/-pi/2. | 
|---|
| 47 | ** | 
|---|
| 48 | **  5  This routine is the spherical equivalent of the routine slaTpv2c. | 
|---|
| 49 | ** | 
|---|
| 50 | **  Called:  slaRanorm | 
|---|
| 51 | ** | 
|---|
| 52 | **  Last revision:   5 June 1995 | 
|---|
| 53 | ** | 
|---|
| 54 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 55 | */ | 
|---|
| 56 | { | 
|---|
| 57 | float x2, y2, sd, cd, sdf, r2, r, s, c; | 
|---|
| 58 |  | 
|---|
| 59 | x2 = xi * xi; | 
|---|
| 60 | y2 = eta * eta; | 
|---|
| 61 | sd = (float) sin ( (double) dec ); | 
|---|
| 62 | cd = (float) cos ( (double) dec ); | 
|---|
| 63 | sdf = sd * (float) sqrt ( (double) ( 1.0f + x2 + y2 ) ); | 
|---|
| 64 | r2 = cd * cd * ( 1.0f + y2 ) - sd * sd * x2; | 
|---|
| 65 | if ( r2 >= 0.0f ) { | 
|---|
| 66 | r = (float) sqrt ( (double) r2 ); | 
|---|
| 67 | s = sdf - eta * r; | 
|---|
| 68 | c = sdf * eta + r; | 
|---|
| 69 | if ( xi == 0.0f && r == 0.0f ) { | 
|---|
| 70 | r = 1.0f; | 
|---|
| 71 | } | 
|---|
| 72 | *raz1 = slaRanorm ( ra - (float) atan2 ( (double) xi, (double) r ) ); | 
|---|
| 73 | *decz1 = (float) atan2 ( (double) s, (double) c ); | 
|---|
| 74 | r = -r; | 
|---|
| 75 | s = sdf - eta * r; | 
|---|
| 76 | c = sdf * eta + r; | 
|---|
| 77 | *raz2 = slaRanorm ( ra - (float) atan2 ( (double) xi, (double) r ) ); | 
|---|
| 78 | *decz2 = (float) atan2 ( (double) s, (double) c ); | 
|---|
| 79 | *n = ( fabs ( (double) sdf ) < 1.0 ) ? 1 : 2; | 
|---|
| 80 | } else { | 
|---|
| 81 | *n = 0; | 
|---|
| 82 | } | 
|---|
| 83 | } | 
|---|